Catalysis Letters

, Volume 125, Issue 3–4, pp 371–375 | Cite as

Visible-Light Photocatalytic Degradation of Aromatic Contaminants with Simultaneous H2 Generation: Comparison of 2,4-Dichlorophenoxyacetic Acid and 4-Chlorophenol

  • Xianghua Zhang
  • Hong Liu
  • Wenzhao Li
  • Guofeng Cui
  • Hengyong Xu
  • Keli Han
  • Qingping Long
Article

Abstract

Aromatic contaminants, 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chlorophenol (4-CP), were photocatalytically degraded in aqueous solutions under visible light illumination. 2,4-D was degraded more rapidly with more amount of simultaneous hydrogen generation than 4-CP. This is due to their difference in oxidative potentials, hydrophobic effects, electrostatic interactions and chemisorptions on the photocatalyst 3%WOx/TiO2.

Keywords

Photocatalysis Visible light Degradation 2,4-Dichlorophenoxyacetic acid 4-Chlorophenol Hydrogen generation 

References

  1. 1.
    Hashimoto K, Kawai T, Sakata T (1984) J Phys Chem 88:4083CrossRefGoogle Scholar
  2. 2.
    Bolton JR (1996) Sol Energy 57:37CrossRefGoogle Scholar
  3. 3.
    Mbindyo JKN, Ahmadi MF, Rusling JF (1997) J Electrochem Soc 144:3153CrossRefGoogle Scholar
  4. 4.
    Li YX, Lu GX, Li SB (2003) Chemosphere 52:843CrossRefGoogle Scholar
  5. 5.
    Li YX, Lu GX, Li SB (2001) Appl Catal A 214:179CrossRefGoogle Scholar
  6. 6.
    Li YX, Xie YZ, Peng SQ, Lu GX, Li SB (2006) Chemosphere 63:1312CrossRefGoogle Scholar
  7. 7.
    Chatterjee D, Dasgupta S (2005) J Photochem Photobiol C 6:186CrossRefGoogle Scholar
  8. 8.
    Patsoura A, Kondarides DI, Verykios XE (2006) Appl Catal B 64:171CrossRefGoogle Scholar
  9. 9.
    Li XZ, Li FB, Yang CL, Ge WK (2001) J Photochem Photobiol A 141:209CrossRefGoogle Scholar
  10. 10.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CTGoogle Scholar
  11. 11.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974CrossRefGoogle Scholar
  12. 12.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  13. 13.
    Lee C, Yang W, Parr RD (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  14. 14.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  15. 15.
    Bard AJ, Faulkner LR (2001) Electrochemical method, 2nd edn. Wiley, New York, p 286Google Scholar
  16. 16.
    Abe R, Sayama K, Arakawa H (2004) J Photochem Photobiol A 166:115CrossRefGoogle Scholar
  17. 17.
    Qian W, Wang YH, Wang WH, Yao P, Zhuang JH, Xie Y, Huang ZX (2002) J Electroanal Chem 535:85CrossRefGoogle Scholar
  18. 18.
    Zhang F, Zhao J, Shen T, Hidaka H, Pelizzetti E, Serpone N (1999) Appl Catal B 15:147CrossRefGoogle Scholar
  19. 19.
    Nakamura M, Suzuki T, Amano K, Yamada S (2001) Anal Chim Acta 428:219CrossRefGoogle Scholar
  20. 20.
    U.S. Department of Health and Human Services (2003) Hazardous Substances Data Bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MDGoogle Scholar
  21. 21.
    Flynn GL. In: Gerity TR, Henry CJ (eds) Principles of route-to-route extrapolation for risk assessment. p 93Google Scholar
  22. 22.
    Yao CCD, Haag WR (1991) Water Res 25:761CrossRefGoogle Scholar
  23. 23.
    Lee YG, Hwang SH, Kim SD (2006) Arch Environ Contam Toxicol 50:213CrossRefGoogle Scholar
  24. 24.
    Wu XY, Cong PH, Nanao H, Kobayashi K, Mori S (2002) Langmuir 18:10122CrossRefGoogle Scholar
  25. 25.
    Pearson RG (1966) Science 151:172CrossRefGoogle Scholar
  26. 26.
    Mukhopadhyay P, Schreiber HP (1995) Colloid Surface A 100:47CrossRefGoogle Scholar
  27. 27.
    Kwon YT, Song KY, Lee WI, Choi GJ, Do YR (2000) J Catal 191:192CrossRefGoogle Scholar
  28. 28.
    Sun YF, Pignatello JJ (1995) Environ Sci Technol 29:2065CrossRefGoogle Scholar
  29. 29.
    Robert D, Parra S, Pulgarin C, Krzton A, Weber JV (2000) Appl Surf Sci 167:51CrossRefGoogle Scholar
  30. 30.
    Horikoshi S, Tokunaga A, Watanabe N, Hidaka H, Serpone N (2006) J Photochem Photobiol A 177:129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xianghua Zhang
    • 1
  • Hong Liu
    • 2
  • Wenzhao Li
    • 1
  • Guofeng Cui
    • 2
  • Hengyong Xu
    • 1
  • Keli Han
    • 1
  • Qingping Long
    • 2
  1. 1.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China
  2. 2.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations