Catalysis Letters

, 125:154 | Cite as

Electronic Effect of Substituent of Quinones on their Catalytic Performance in Hydrocarbons Oxidation

  • Lipeng Zhou
  • Yong Chen
  • Xiaomei Yang
  • Yunlai Su
  • Wei Zhang
  • Jie Xu


Quinones with electron-withdrawing F, Cl or Br groups and N-hydroxyphthalimide (NHPI) were used as catalysts in selective oxidation of hydrocarbons with molecular oxygen as oxidant. The catalytic activity in the selective oxidation of ethylbenzene to oxygenation products was in the following order: p-benzoquinone < tetrafluoro-p-benzoquinone ≈ tetrachloro-p-benzoquinone < tetrabromo-p-benzoquinone (p-TBBQ). Moderate electron-withdrawing power of substituent was suitable for quinone abstracting hydrogen from NHPI to generate reactive phthalimido-N-oxyl (PINO). The catalytic activity of p-TBBQ/NHPI, the best catalyst in our study, was also tested in the selective oxidation of alkylarenes, alkenes and alkanes.


Quinones Substituent effects Hydrocarbons Oxidation N-hydroxyphthalimide 



We are grateful to the National Natural Science Foundation of China (Grant: 20603038) and Zhengzhou University for the financial support.


  1. 1.
    Lü J, Rosokha SV, Neretin IS, Kochi JK (2006) J Am Chem Soc 128:16708–16719CrossRefGoogle Scholar
  2. 2.
    Xia S, Xu S, Zhang X, Zhong F (2007) J Phys Chem B 111:2200–2207CrossRefGoogle Scholar
  3. 3.
    Mure M (2004) Acc Chem Res 37:131–139CrossRefGoogle Scholar
  4. 4.
    Stites TE, Mitchell AE, Rucker RB (2000) J Nutr 130:719–727Google Scholar
  5. 5.
    Brière J-J, Schlemmer D, Chretien D, Rustin P (2004) Biochem Biophys Res Commun 316:1138–1142CrossRefGoogle Scholar
  6. 6.
    D’Souza F (1996) J Am Chem Soc 118:923–924CrossRefGoogle Scholar
  7. 7.
    Ishii Y, Sakaguchi S, Iwahama T (2001) Adv Synth Catal 343:393–427CrossRefGoogle Scholar
  8. 8.
    Recupero F, Punta C (2007) Chem Rev 107:3800–3842CrossRefGoogle Scholar
  9. 9.
    Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138–5175CrossRefGoogle Scholar
  10. 10.
    Yang GY, Ma YF, Xu J (2004) J Am Chem Soc 126:10542–10543CrossRefGoogle Scholar
  11. 11.
    Yang GY, Zhang QH, Miao H, Tong XL, Xu J (2005) Org Lett 7:263–266CrossRefGoogle Scholar
  12. 12.
    Evans S, Smith JRL (2001) J Chem Soc Perkin Trans 2:174–180Google Scholar
  13. 13.
    Shul’pin GB, Mol J (2002) Catal A 189:39–66CrossRefGoogle Scholar
  14. 14.
    Ma H, Xu J, Zhang QH, Miao H, Wu WH (2007) Catal Commun 8:27–30CrossRefGoogle Scholar
  15. 15.
    Olivella S, Anglada JM, Solé A, Bofill JM (2004) Chem Eur J 10:3404–3410CrossRefGoogle Scholar
  16. 16.
    DiLabio GA, Johnson ER (2007) J Am Chem Soc 129:6199–6203CrossRefGoogle Scholar
  17. 17.
    Fecenko CJ, Thorp HH, Meyer TJ (2007) J Am Chem Soc 129:15098–15099CrossRefGoogle Scholar
  18. 18.
    Andrews LJ, Keefer RM (1988) J Org Chem 53:2163–2166CrossRefGoogle Scholar
  19. 19.
    Sun Z, Xu J, Du Z, Zhang W (2007) Appl Catal A 323:119–125CrossRefGoogle Scholar
  20. 20.
    Bukharkina TV, Grechishkina OS, Digurov NG, Krukovskaya NV (2003) Org Process Res Dev 7:148–154CrossRefGoogle Scholar
  21. 21.
    Denisov ET (2006) Kinet Catal 47:662–671CrossRefGoogle Scholar
  22. 22.
    Suresh A, Sharma M, Sridhar T (2000) Ind Eng Chem Res 39:3958–3997CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lipeng Zhou
    • 1
  • Yong Chen
    • 1
  • Xiaomei Yang
    • 1
  • Yunlai Su
    • 1
  • Wei Zhang
    • 2
  • Jie Xu
    • 2
  1. 1.Department of Chemistry, Institute of CatalysisZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations