Catalysis Letters

, Volume 124, Issue 3–4, pp 168–173 | Cite as

Effect of Nitric Acid Treatment on Carbon Nanotubes (CNTs)-Cordierite Monoliths Supported Ruthenium Catalysts for Ammonia Synthesis

  • Xiujin Yu
  • Bingyu Lin
  • Binbin Gong
  • Jianxin Lin
  • Rong Wang
  • Kemei Wei
Article

Abstract

Nitric acid treatment of CNTs-cordierite monolith changes the amount of Mg, Si, Al and oxygen-containing functional groups, thereby influencing on the surface area and pore size distribution of composite materials. Appropriate treatment of CNTs-cordierite with nitric acid increases the surface area and the amount of micropores slightly, but improves the activities for ammonia synthesis noticeable, which might be a consequent of the variation of the amount of Mg, Si, Al and oxygen-containing functional groups. The ammonia synthesis activity of Ba–Ru/CNTs-cordierite increase by more than 30% if the support material is treated at 30 °C for 4 h with nitric acid.

Keywords

CNTs-cordierite Nitric acid treatment Ru Ammonia synthesis 

References

  1. 1.
    Xu Q-C, Lin J-D, Li J, Fu X-Z, Liang Y, Liao D-W (2007) Catal Commun 8:1881CrossRefGoogle Scholar
  2. 2.
    Xu QC, Lin JD, Li J, Fu XZ, Yang ZW, Guo WM, Liao DW (2006) J Mol Catal A: Chem 259:218CrossRefGoogle Scholar
  3. 3.
    Chen HB, Lin JD, Cai Y, Wang XY, Yi J, Wang J, Wei G, Lin YZ, Liao DW (2001) Appl Surf Sci 180:328CrossRefGoogle Scholar
  4. 4.
    Liang CH, Li ZL, Qiu JS, Li C (2002) J Catal 211:278Google Scholar
  5. 5.
    Garcia-Bordeje E, Kvande I, Chen D, Ronning M (2007) Carbon 45:1828CrossRefGoogle Scholar
  6. 6.
    Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT (2004) Catal Lett 96:113CrossRefGoogle Scholar
  7. 7.
    Lachman IM, Williams JL (1992) Catal Today 14:317CrossRefGoogle Scholar
  8. 8.
    Williams JL (2001) Catal Today 69:3CrossRefGoogle Scholar
  9. 9.
    Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA (2001) Cattech 5:30CrossRefGoogle Scholar
  10. 10.
    Gong B, Wang R, Lin B, Xie F, Yu X, Wei K Catal Lett. doi: 10.1007/s10562-007-9374-4
  11. 11.
    Tohji K, Goto T, Takahashi H, Shinoda Y, Shimizu N, Jeyadevan B, Matsuoka I, Saito Y, Kasuya A, Ohsuna T, Hiraga K, Nishina Y (1996) Nature 383:679CrossRefGoogle Scholar
  12. 12.
    Tsang SC, Chen YK, Harris PJF, Green MLH (1994) Nature 372:159CrossRefGoogle Scholar
  13. 13.
    Dujardin E, Ebbesen TW, Michael AK, Treacy MJ (1998) Adv Mater 10:611CrossRefGoogle Scholar
  14. 14.
    Ebbesen TW, Hiura H, Bisher ME, Treacy MMJ, Shreeve-Keyer JL, Haushalter RC (1996) Adv Mater 8:155CrossRefGoogle Scholar
  15. 15.
    Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Carbon 41:1057CrossRefGoogle Scholar
  16. 16.
    Liu Z-J, Yuan Z-Y, Zhou W, Peng L-M, Xu Z (2001) Phys Chem Chem Phys 3:2518CrossRefGoogle Scholar
  17. 17.
    Rodriguez-reinoso F (1998) Carbon 36:159CrossRefGoogle Scholar
  18. 18.
    Giordano R, Serp P, Kalck P, Kihn Y, Schreiber J, Marhic C, Duvail J-L (2003) Eur J Inorg Chem 2003:610CrossRefGoogle Scholar
  19. 19.
    Liao P-H, Yang H-M (2008) Catal Lett 121:274CrossRefGoogle Scholar
  20. 20.
    Garcia J, Gomes HT, Serp P, Kalck P, Figueiredo JL, Faria JL (2005) Catal Today 102–103:101CrossRefGoogle Scholar
  21. 21.
    Liu H, Cheng G, Zheng R, Zhao Y, Liang C (2005) J Mol Catal A Chem 230:17CrossRefGoogle Scholar
  22. 22.
    Rosca ID, Watari F, Uo M, Akasaka T (2005) Carbon 43:3124CrossRefGoogle Scholar
  23. 23.
    Kim YJ, Shin TS, Choi HD, Kwon JH, Chung Y-C, Yoon HG (2005) Carbon 43:23CrossRefGoogle Scholar
  24. 24.
    Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Chem Mater 19:5765CrossRefGoogle Scholar
  25. 25.
    Shigapov AN, Graham GW, McCabe RW, Paputa Peck M, Kiel Plummer H (1999) Appl Catal A 182:137CrossRefGoogle Scholar
  26. 26.
    Liang CH, Wei ZB, Xin Q, Li C (2001) Appl Catal A 208:193CrossRefGoogle Scholar
  27. 27.
    Lin B, Wang R, Lin J, Du S, Yu X, Wei K (2007) Catal Commun 8:1838CrossRefGoogle Scholar
  28. 28.
    Garcia-Bordeje E, Kapteijn F, Moulijn JA (2002) Carbon 40:1079CrossRefGoogle Scholar
  29. 29.
    Li C-H, Yao K-F, Liang J (2003) Carbon 41:858CrossRefGoogle Scholar
  30. 30.
    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253CrossRefGoogle Scholar
  31. 31.
    Hiura H, Ebbesen TW, Tanigaki K (1995) Adv Mater 7:275CrossRefGoogle Scholar
  32. 32.
    Boehm HP (2002) Carbon 40:145CrossRefGoogle Scholar
  33. 33.
    Chen W, Pan X, Willinger MG, Su DS, Bao X (2006) J Am Chem Soc 128:3136CrossRefGoogle Scholar
  34. 34.
    Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379CrossRefGoogle Scholar
  35. 35.
    Liang Y, Zhang H, Yi B, Zhang Z, Tan Z (2005) Carbon 43:3144CrossRefGoogle Scholar
  36. 36.
    Haydar S, Moreno-Castilla C, Ferro-Garcia MA, Carrasco-Marin F, Rivera-Utrilla J, Perrard A, Joly JP (2000) Carbon 38:1297CrossRefGoogle Scholar
  37. 37.
    Han WF, Liu HZ, Zhu H (2007) Catal Commun 8:351CrossRefGoogle Scholar
  38. 38.
    Kowalczyk Z, Jodzis S, Rarog W, Zielinski J, Pielaszek J, Presz A (1999) Appl Catal A 184:95CrossRefGoogle Scholar
  39. 39.
    Aika K, Takano T, Murata S (1992) J Catal 136:126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xiujin Yu
    • 1
  • Bingyu Lin
    • 1
  • Binbin Gong
    • 1
  • Jianxin Lin
    • 1
  • Rong Wang
    • 1
  • Kemei Wei
    • 1
  1. 1.National Engineering Research Center of Chemical Fertilizer CatalystFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations