Catalysis Letters

, Volume 123, Issue 3–4, pp 173–180 | Cite as

Enhancing Photocatalytic Activity of Polymorphic Titania Nanoparticles by NMP Solvent-based Ambient Condition Process

  • Sujaree Kaewgun
  • Christopher A. Nolph
  • Burtrand I. Lee


Solvent-based ambient condition sol (SACS) process with N-methylpyrrolidone (NMP) as the solvent, is a post-treatment technique utilized to modify polymorphic titania nanoparticles prepared by a water-based ambient condition sol process. All samples were characterized by X-ray diffraction, N2 physisorption, CHNS analysis, UV–vis absorption spectrophotometry, FT-IR, and TEM and compared to a commercial reference titania product, Degussa P25. Photocatalytic activity, evaluated by the degradation of methyl orange under ultraviolet (UV) and visible light (VL), showed that SACS, with NMP as the solvent, is a powerful treatment to enhance TiO2 photocatalytic activity by minimizing lattice hydroxyls and doping titania samples with nitrogen.


Polymorphic titania Solvothermal Photocatalytic activity 


  1. 1.
    Fujishim A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  3. 3.
    Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  4. 4.
    Matthews RW (1988) J Catal 111:264CrossRefGoogle Scholar
  5. 5.
    Pelizzetti E (1995) Sol Energ Mat Sol C 38:453CrossRefGoogle Scholar
  6. 6.
    Tryk DA, Fujishima A, Honda K (2000) Electrochim Acta 45:2363CrossRefGoogle Scholar
  7. 7.
    Lee BI, Wang XY, Bhave R, Hu M (2006) Mater Lett 60:1179CrossRefGoogle Scholar
  8. 8.
    Bhave RC, Lee BI (2007) Mat Sci Eng A Struct 467:146CrossRefGoogle Scholar
  9. 9.
    Nolph CA, Sievers DE, Kaewgun S, Kucera CJ, McKinney DH, Rientjes JP, White JL, Bhave R, Lee BI (2007) Catal Lett 117:102CrossRefGoogle Scholar
  10. 10.
    Degussa (2005) In: Degussa technical information, vol 1243Google Scholar
  11. 11.
    Sato T, Aita Y, Komatsu M, Yin S (2006) J Mater Sci 41:1433CrossRefGoogle Scholar
  12. 12.
    Yin S, Fujishiro Y, Wu JH, Aki M, Sato T (2003) J Mater Process Tech 137:45CrossRefGoogle Scholar
  13. 13.
    Yin S, Inoue Y, Uchida S, Fujishiro Y, Sato T (1998) J Mater Res 13:844CrossRefGoogle Scholar
  14. 14.
    Yin S, Sato T (2000) Ind Eng Chem Res 39:4526CrossRefGoogle Scholar
  15. 15.
    Yin S, Aita Y, Komatsu M, Wang JS, Tang Q, Sato T (2005) J Mater Chem 15:674CrossRefGoogle Scholar
  16. 16.
    Kaewgun S, Nolph CA, Lee BI, Wang L-Q (2007) Appl Catal A: Gen J (Submitted)Google Scholar
  17. 17.
    Kota R, Lee BI (2007) J Mater Sci: Mater Electron 18:1221CrossRefGoogle Scholar
  18. 18.
    Qi L, Lee BI, Badheka P, Wang LQ, Gilmour P, Samuels WD, Exarhos GJ (2005) Mater Lett 59:2794CrossRefGoogle Scholar
  19. 19.
    Aita Y, Komatsu M, Yin S, Sato T (2004) J Solid State Chem 177:3235CrossRefGoogle Scholar
  20. 20.
    Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483CrossRefGoogle Scholar
  21. 21.
    Zhang HZ, Banfield JF (2000) J Phys Chem B 104:3481CrossRefGoogle Scholar
  22. 22.
    JCPDS #29-1276Google Scholar
  23. 23.
    Li JG, Ishigaki T, Sun XD (2007) J Phys Chem C 111:4969CrossRefGoogle Scholar
  24. 24.
    Birks LS, Friedman H (1946) J Appl Phys 17:687CrossRefGoogle Scholar
  25. 25.
    Lee BI (1999) J Electroceram 3:53CrossRefGoogle Scholar
  26. 26.
    Lu SW, Lee BI, Mann LA (2000) Mater Lett 43:102CrossRefGoogle Scholar
  27. 27.
    Lu SW, Lee BI, Mann LA (2000) Mater Res Bull 35:1303CrossRefGoogle Scholar
  28. 28.
    JCPDS #29-1272Google Scholar
  29. 29.
    JCPDS #29-1360Google Scholar
  30. 30.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  31. 31.
    Chi B, Zhao L, Jin T (2007) J Phys Chem C 111:6189CrossRefGoogle Scholar
  32. 32.
    Joung SK, Amemiya T, Murabayashi M, Itoh K (2006) Appl Catal A Gen 312:20CrossRefGoogle Scholar
  33. 33.
    Kang IC, Zhang QW, Kano J, Yin S, Sato T, Saito F (2007) J Photochem Photobiol A 189:232CrossRefGoogle Scholar
  34. 34.
    Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Ishihara S, Takasu Y, Murakami Y (2007) Catal Today 120:226CrossRefGoogle Scholar
  35. 35.
    Nakamura R, Tanaka T, Nakato Y (2004) J Phys Chem B 108:10617CrossRefGoogle Scholar
  36. 36.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349CrossRefGoogle Scholar
  37. 37.
    Venkatachalam N, Vinu A, Anandan S, Arabindoo B, Murugesan V (2006) J Nanosci Nanotechnol 6:2499CrossRefGoogle Scholar
  38. 38.
    Yin S, Aita Y, Komatsu M, Sato T (2006) J Eur Ceram Soc 26:2735CrossRefGoogle Scholar
  39. 39.
    Burda C, Lou YB, Chen XB, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3:1049CrossRefGoogle Scholar
  40. 40.
    Chen XB, Burda C (2004) J Phys Chem B 108:15446CrossRefGoogle Scholar
  41. 41.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) In: Chastain J, King RC (eds) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, IncGoogle Scholar
  42. 42.
    Munoz MA, Carmona C, Balon M (2007) Chem Phys 335:37CrossRefGoogle Scholar
  43. 43.
    Suda Y, Morimoto T (1987) Langmuir 3:786CrossRefGoogle Scholar
  44. 44.
    Zheng YQ, Erwei S, Cui SX, Li WJ, Hu XF (2000) J Mater Sci Lett 19:1445CrossRefGoogle Scholar
  45. 45.
    Hayashi H, Torii K (2002) J Mater Chem 12:3671CrossRefGoogle Scholar
  46. 46.
    Howe RF, Gratzel M (1985) J Phys Chem-US 89:4495CrossRefGoogle Scholar
  47. 47.
    Howe RF, Gratzel M (1987) J Phys Chem-US 91:3906CrossRefGoogle Scholar
  48. 48.
    Kongsuebchart W, Praserthdam P, Panpranot J, Sirisuk A, Supphasrirongjaroen P, Satayaprasert C (2006) J Cryst Growth 297:234CrossRefGoogle Scholar
  49. 49.
    Nakaoka Y, Nosaka Y (1997) J Photochem Photobiol A 110:299CrossRefGoogle Scholar
  50. 50.
    Ohtani B, Ogawa Y, Nishimoto S (1997) J Phys Chem B 101:3746CrossRefGoogle Scholar
  51. 51.
    Li M, Hong Z, Fang Y, Huang F (2007) Mater Res Bull (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sujaree Kaewgun
    • 1
  • Christopher A. Nolph
    • 1
  • Burtrand I. Lee
    • 1
  1. 1.School of Materials Science and EngineeringClemson UniversityClemsonUSA

Personalised recommendations