Advertisement

Catalysis Letters

, Volume 123, Issue 1–2, pp 41–45 | Cite as

Direct Aerobic Oxidation of Secondary Alcohols Catalysed by Pt(0) Nanoparticles Stabilized by PV2Mo10O40 5− Polyoxmetalate

  • Galia MaayanEmail author
  • Ronny Neumann
Article

Abstract

Pt(0) nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate were prepared in water by a sequence of redox reactions and supported on α-alumina. Characterization by TEM showed an average particle size of 2.6 nm with an approximate size dispersion of about ±25%. EDS analysis confirmed the amounts of metal and polyoxometalate as indicated from the reaction stoichiometry. These nanoparticles were further used as catalysts for the oxidation of secondary alcohols with molecular oxygen to the corresponding carbonyl products. The oxidation of secondary alcohols was further improved by the use of Pt nanoparticles stabilized by Rh1.7PV2Mo10O40.

Keywords

Pt Nanoparticles Colloids Oxidation Alcohols Oxygen 

Notes

Acknowledgment

The research was supported by the Israel Ministry of Science and the Kimmel Center for Molecular Design. R.N. is the Rebecca and Israel Sieff Professor of Organic Chemistry.

References

  1. 1.
    Ten-Brink GJ, Arends IWCE, Sheldon RA (2000) Science 287:1636CrossRefGoogle Scholar
  2. 2.
    Slovoda-Rozner D, Alsters PL, Neumann R (2003) J Am Chem Soc 125:5280–5281CrossRefGoogle Scholar
  3. 3.
    Haimov A, Neumann R (2002) Chem Comm 876–877Google Scholar
  4. 4.
    Ben-Daniel R, Alsters P, Neumann R (2001) J Org Chem 66:8650–8653CrossRefGoogle Scholar
  5. 5.
    Dijksam A, Ten-Brink GJ, Arends IWCE, Sheldon R (2002) Acc Chem Res 35:774–781CrossRefGoogle Scholar
  6. 6.
    Thompson A, Zhan BZ (2004) Tetrahedron 60:2917–2935CrossRefGoogle Scholar
  7. 7.
    Besson M, Gallezot P (2000) Catal Today 57:127–141CrossRefGoogle Scholar
  8. 8.
    Moori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657–10666CrossRefGoogle Scholar
  9. 9.
    Choi KM, Akita T, Mizugaki T, Ebitani K, Kaneda K (2003) New J Chem 27:324–328CrossRefGoogle Scholar
  10. 10.
    Uozumi Y, Nakao R (2003) Angew Chem Int Ed 42:194–197CrossRefGoogle Scholar
  11. 11.
    Hou Z, Theysen N, Brinkmann A, Leitner W (2005) Angew Chem Int Ed 44:1346–1349CrossRefGoogle Scholar
  12. 12.
    Schultz MJ, Hamilton SS, Jensen DR, Sigman MS (2005) J Org Chem 70:3343–3352CrossRefGoogle Scholar
  13. 13.
    Marko IE, Gils PR, Tsukazaki M, Chelle-Regnaut I, Urch CJ, Brown SM (1997) J Am Chem Soc 119:12661–12662CrossRefGoogle Scholar
  14. 14.
    (a) Wang J, Yan L, Qian G, Wang X (2006) Tet Lett 47:7171–7174 (b) Maayan G, Ganchegui B, Leitner W, Neumann R (2006) Chem Comm 21:2230–2232 (c) Khenkin A, Shimon LJW, Neumann R (2003) Inorg Chem 42 (10):3331–3339 (d) Plault L, Hauseler A, Nlate S, Astruc D, Ruiz J, Gatard S, Neumann R (2004) Angew Chem Int Ed 43:2924–2928Google Scholar
  15. 15.
    (a) Finke RG, Oezkar S (2004) Coord Chem Rev 248:135–146 (b) Oezkar S, Finke RG (2002) J Am Chem Soc 124:5796–5810 (c) Finke RG (2002) Metal nanoparticles 17–54. (d) Troupis A, Hiskia A, Papaconstantinou E (2002) Angew Chem Int Ed 41:1911–1914 (e) Kogan V, Aizenshtat Z, Popovitz-Biro R, Neumann R (2002) Org Lett 4:3529–3532Google Scholar
  16. 16.
    Tsigdinos GA, Hallada CJ (1968) Inorg Chem 7:437–441CrossRefGoogle Scholar
  17. 17.
    Maayan G, Neumann R (2005) Chem Comm 36:4595–4597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Organic ChemistryWeizmann Israel of ScienceRehovotIsrael

Personalised recommendations