Catalysis Letters

, Volume 121, Issue 1–2, pp 1–11

Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

  • Amitava Sarkar
  • Gary Jacobs
  • Yaying Ji
  • Hussein H. Hamdeh
  • Burtron H. Davis
Article

Abstract

Rubidium promoted iron Fischer–Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. Mössbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was χ-Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, ɛ′-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

Keywords

Fischer–Tropsch synthesis Iron catalyst Rubidium Active species Mössbauer XANES EXAFS Alkali promoters 

References

  1. 1.
    Ronald D, Bell AT (1986) J Catal 97:121CrossRefGoogle Scholar
  2. 2.
    Ngantsoue-Hoc W, Zhang Y, O’Brien RJ, Luo M, Davis BH (2002) Appl Catal 236:77CrossRefGoogle Scholar
  3. 3.
    Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197CrossRefGoogle Scholar
  4. 4.
    Li S, Ding W, Meitzner GD, Iglesia E (2002) J Phys Chem B 106:85CrossRefGoogle Scholar
  5. 5.
    Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202CrossRefGoogle Scholar
  6. 6.
    Luo M, O’Brien RJ, Bao S, Davis BH (2003) Appl Catal A Gen 239:111CrossRefGoogle Scholar
  7. 7.
    Arakawa H, Bell AT (1983) Ind Eng Chem Res Process Des Dev 22:97CrossRefGoogle Scholar
  8. 8.
    Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36CrossRefGoogle Scholar
  9. 9.
    Bukur DB, Mukesh DS, Patal A (1990) Ind Eng Chem Res 29:194CrossRefGoogle Scholar
  10. 10.
    Dictor RA, Bell AT (1986) J Catal 97:121CrossRefGoogle Scholar
  11. 11.
    Miller DG, Moskovits M (1988) J Phys Chem 92:6081CrossRefGoogle Scholar
  12. 12.
    Doskocil EJ, Bordawekar SV, Davis RJ (1997) J Catal 169:327CrossRefGoogle Scholar
  13. 13.
    Tsuchiya S, Takase S, Imamura H (1984) Chem Lett 5:661CrossRefGoogle Scholar
  14. 14.
    Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases. Kodansha, TokyoGoogle Scholar
  15. 15.
    Ressler T (1997) WinXAS97 version 1.0Google Scholar
  16. 16.
    Niemantsverdriet JW, van der Krann AM, van Dijk WL, van der Baan HS (1980) J Phys Chem 84:3363CrossRefGoogle Scholar
  17. 17.
    Butt JB (1990) Catal Lett 7:61CrossRefGoogle Scholar
  18. 18.
    Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis—science and technology. Springer-Verlag, New York, p 59Google Scholar
  19. 19.
    Huang C-S, Ganguly B, Huffman GP, Huggins FE, Davis BH (1993) Fuel Sci Technol Int 11(9):1289Google Scholar
  20. 20.
    Hofer LJE (1956) In: Emmett PH (ed) Catalysis, vol IV. Reinhold Publishing, New York, pp 373–442Google Scholar
  21. 21.
    Zarochak MF, McDonald MA (1986) Slurry-phase Fischer–Tropsch synthesis, CONF-86/288-1, Proceedings of indirect liquefaction contractor’s conference, Monroeville, PA, USA, December 2–4, 1986Google Scholar
  22. 22.
    Davis BH (1999) Technology development for iron Fischer–Tropsch catalysis, US DOE Final Technical Report, Contract # DE-AC22-94PC94055-13Google Scholar
  23. 23.
    Sarkar A, Seth D, dozier AK, Neathery JK, Hamdeh HH, Davis BH (accepted, in press) Catal LettGoogle Scholar
  24. 24.
    Sarkar A, Dozier AK, Graham UM, Thomas G, O’Brien RJ, Davis BH (2007) Appl Catal A Gen 326:55CrossRefGoogle Scholar
  25. 25.
    Rao KRPM, Huggins FE, Huffman GP, Gormley RJ, O’Brien RJ, Davis BH (1996) Energy Fuels 10:546CrossRefGoogle Scholar
  26. 26.
    Rao KRPM, Huggins FE, Huffman GP, O’Brien RJ, Gormley RJ, Davis BH (1995) Prepr Pap ACS Div Fuel Chem 40(1):153Google Scholar
  27. 27.
    Li S, Meitzner GD, Iglesia E (2001) J Phys Chem B 105:5743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Amitava Sarkar
    • 1
  • Gary Jacobs
    • 1
  • Yaying Ji
    • 1
  • Hussein H. Hamdeh
    • 2
  • Burtron H. Davis
    • 1
  1. 1.Center for Applied Energy ResearchUniversity of KentuckyLexingtonUSA
  2. 2.Department of PhysicsWichita State UniversityWichitaUSA

Personalised recommendations