Catalysis Letters

, Volume 120, Issue 1–2, pp 154–160 | Cite as

Characterization of Acidity and Porosity of Zeolite Catalysts by the Equilibrated Thermodesorption of n-Hexane and n-Nonane

Article

Abstract

Thermodesorption of n-hexane and n-nonane from the acidic and non-acidic zeolites ZSM-5 and Y was studied by means of the thermogravimetric temperature programmed equilibrated desorption (TPED) and quasi-equilibrated temperature programmed desorption and adsorption (QE-TPDA). Micropore volumes determined from the adsorption capacity of n-hexane were close to those determined by N2 adsorption. Content and strength of acid sites in the acidic zeolites estimated by fitting the Arrhenius equation to the high temperature parts of QE-TPDA profiles of n-hexane attributed to its cracking were in agreement with their acidity characteristics obtained by IR spectroscopy of chemisorbed pyridine. The mesopore volume was determined from the QE-TPDA profiles of n-nonane. Coking observed only for QE-TPDA of n-nonane on H-USY zeolite resulted in blocking the micropores without affecting the mesopores.

Keywords

Thermodesorption Zeolites n-Hexane n-Nonane Pore volume Acidity 

Notes

Acknowledgement

This work has been supported by the Ministry of Science and Higher Education of Poland with a grant number N507 108 32/3175

References

  1. 1.
    Ruthven DM (2001) In: Robson H (ed) Verified syntheses of zeolitic materials. Elsevier, Amsterdam, pp 61–65Google Scholar
  2. 2.
    Mittelmeijer-Hazeleger MC, van der Linden B, Bliek A (1995) J Porous Mater 2:25CrossRefGoogle Scholar
  3. 3.
    Jentys A, Lercher JA (2001) In: van Bekkum H, Jacobs PA, Flanigen EM, Jansen JC (eds) Introduction to zeolite science and practice. Elsevier, Amsterdam, p 357Google Scholar
  4. 4.
    Makowski W, Majda D (2004) Thermochim Acta 412:131CrossRefGoogle Scholar
  5. 5.
    Makowski W, Majda D (2005) Appl Surf Sci 252:707CrossRefGoogle Scholar
  6. 6.
    Makowski W, Majda D (accepted) J Porous Mater (doi: 10.1007/s10934-006-9004-3)
  7. 7.
    Makowski W (2007) Thermochim Acta 454:26CrossRefGoogle Scholar
  8. 8.
    Makowski W, Kuśtrowski P (2007) Micropor Mesopor Mater 102:283CrossRefGoogle Scholar
  9. 9.
    Smit B, Maesen TLM (1995) Nature 374:42Google Scholar
  10. 10.
    Majda D, Makowski W (2005) Stud Surf Sci Catal 158:1161CrossRefGoogle Scholar
  11. 11.
    Makowski W, Ogorzałek Ł, Thermochim Acta, submitted Google Scholar
  12. 12.
    Datka J, Gil B, Złamaniec J, Batamack P, Fraissard J, Massiani P (1999) Polish J Chem 73:1535Google Scholar
  13. 13.
    Millot B, Methivier A, Jobic H (1998) J Phys Chem 102:3210Google Scholar
  14. 14.
    Gribov EN, Sastre G, Corma A (2005) J Phys Chem B 109:23794CrossRefGoogle Scholar
  15. 15.
    Zhu W, Kapteijn F, van der Linden B, Moulijn JA (2001) Phys Chem Chem Phys 3:1755CrossRefGoogle Scholar
  16. 16.
    Eder F, Lercher JA (1997) Zeolites 18:75CrossRefGoogle Scholar
  17. 17.
    Tao Y, Kanoh H, Kaneko K (2006) Adsorption 12:309CrossRefGoogle Scholar
  18. 18.
    Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramìrez J (2004) Coll Surf A Physicochem Eng 241:53CrossRefGoogle Scholar
  19. 19.
    Denayer JF, Baron GV, Jacobs PA, Martens JA (2000) Phys Chem Chem Phys 2:1007CrossRefGoogle Scholar
  20. 20.
    Cerqueira HS, Ayrault P, Datka J, Guisnet M (2000) Micropor Mesopor Mater 38:197CrossRefGoogle Scholar
  21. 21.
    Cerqueira HS, Ayrault P, Datka J, Magnoux P, Guisnet M (2000) J Catal 196:149CrossRefGoogle Scholar
  22. 22.
    Gil B, Mierzyńska K, Szczerbińska M, Datka J (2007) Micropor Mesopor Mater 99:328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculty of Chemistry Jagiellonian University KrakowPoland
  2. 2.Regional Laboratory for Physicochemical Analyses and Structural Research Jagiellonian University KrakowPoland

Personalised recommendations