Catalysis Letters

, Volume 120, Issue 1–2, pp 148–153 | Cite as

Study on the Reaction Mechanism for Soot Oxidation Over TiO2 or ZrO2-supported Vanadium Oxide Catalysts by Means of In-situ UV-Raman

  • Jian Liu
  • Zhen ZhaoEmail author
  • Peng Liang
  • Chunming Xu
  • Aijun Duan
  • Guiyuan Jiang
  • Wenyong Lin
  • Israel E. Wachs


The reaction mechanisms for diesel soot oxidation over V4/ZrO2 or V4/TiO2 oxide catalysts were studied by the means of in-situ UV-Raman spectroscopy. The results indicate that the formation of surface oxygen complexes (SOC) is a key step and the SOC species mainly exist as carboxyl groups. The presence of NO in the reaction gas stream can promote the formation of SOC species. For soot oxidation over V4/TiO2 catalyst, NO2 can be produced and remarkably accelerate soot oxidation. Based on the UV-Raman experimental results, two different reaction mechanisms are proposed for soot oxidation over V4/ZrO2 or V4/TiO2 samples, respectively.


Supported vanadium oxide Catalyst UV-Raman In-situ Soot Reaction mechanism 



This work was supported by the National Natural Science Foundation of China (Nos. 20473053 and 20525021), the Beijing Natural Science Foundation (No. 2062020), the 863 Program of China (No. 2006AA06Z346), and the Scientific Research Key Foundation for the Returned Overseas Chinese Scholars of State Education Ministry.


  1. 1.
    Liu J, Zhao Z, Xu C, Duan A, Zhu L, Wang X (2005) Appl Catal B 61:36CrossRefGoogle Scholar
  2. 2.
    Zhao Z, Liu J, Xu C, Duan A, Kobayashi T, Wachs IE (2006) Top Catal 38:309CrossRefGoogle Scholar
  3. 3.
    Setiabudi A, Allaart NK, Makkee M, Moulijn JA (2005) Appl Catal B 60:233CrossRefGoogle Scholar
  4. 4.
    Mul G, Neeft JPA, Kapteijn F, Moulijn JA (1998) Carbon 36:1269CrossRefGoogle Scholar
  5. 5.
    Minogue N, Riordan E, Sodeau JR (2003) J Phys Chem A 107:4436CrossRefGoogle Scholar
  6. 6.
    Oi-Uchisawa J, Obuchi A, Wang SD, Nanba T, Ohi A (2003) Appl Catal B 43:117CrossRefGoogle Scholar
  7. 7.
    Oi-Uchisawa J, Wang SD, Nanba T, Ohi A, Obuchi A (2003) Appl Catal B 44:207CrossRefGoogle Scholar
  8. 8.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Carbon 43:1731CrossRefGoogle Scholar
  9. 9.
    Alvarez-Puebla RA, Garrido JJ, Aroca RF (2004) Anal Chem 76:7118CrossRefGoogle Scholar
  10. 10.
    Amariei D, Coutheoux L, Rossigno S, Kappenstein C (2007) Chem Eng Process 46:165CrossRefGoogle Scholar
  11. 11.
    Minogue N, Riordan E, Sodeau JR (2003) J Phys Chem A 107:4436CrossRefGoogle Scholar
  12. 12.
    Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) J Am Chem Soc 127:15437CrossRefGoogle Scholar
  13. 13.
    Mul G, Kapteijn F, Moulijn JA (1997) Appl Catal B 12:33CrossRefGoogle Scholar
  14. 14.
    Zhang J, Li M, Feng Z, Chen J, Li C (2006) J Phys Chem B 110:927CrossRefGoogle Scholar
  15. 15.
    Li C (2003) J Catal 216:203CrossRefGoogle Scholar
  16. 16.
    Stanmore BR, Brilhac JF, Gilot P (2001) Carbon 39:2247CrossRefGoogle Scholar
  17. 17.
    Liu J, Zhao Z, Xu C, Duan A, Zhu L, Wang X (2006) Catal Today 118:315CrossRefGoogle Scholar
  18. 18.
    Liu J, Zhao Z, Xu C (2005) Acta Phys-Chim Sin 21:156Google Scholar
  19. 19.
    Liu J, Zhao Z, Xu C (2005) Chem J Chinese U 26:1290Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jian Liu
    • 1
  • Zhen Zhao
    • 1
    Email author
  • Peng Liang
    • 2
  • Chunming Xu
    • 1
  • Aijun Duan
    • 1
  • Guiyuan Jiang
    • 1
  • Wenyong Lin
    • 3
  • Israel E. Wachs
    • 3
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina
  2. 2.Material Science & Chemical Engineering School Eastern Liaoning UniversityDandong, LiaoningChina
  3. 3.In-situ Molecular Characterization and Catalysis Laboratory, Department of Chemical EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations