Catalysis Letters

, Volume 119, Issue 1–2, pp 50–58 | Cite as

Fabrication of an Effusive Molecular Beam Instrument for Surface Reaction Kinetics—CO Oxidation and NO Reduction on Pd(111) Surfaces

  • Kandasamy Thirunavukkarasu
  • Chinnakonda  S. GopinathEmail author


A simple molecular beam instrument (MBI) was fabricated for measuring the fundamental parameters in catalysis such as, sticking coefficient, transient and steady state kinetics and reaction mechanism of gas/vapor phase reactions on metal surfaces. Important aspects of MBI fabrication are given in detail. Nitric oxide (NO) decomposition and NO reduction with carbon monoxide (CO) on Pd(111) surfaces were studied. Interesting results were observed for the above reactions and they support the efficiency of the MBI to derive the fundamental parameters of adsorption and catalysis. Sustenance of CO oxidation at 400 K is dependent mostly on the absence of CO-poisoning; apparently, CO + O recombination is the rate determining step ≤400 K. NO adsorption measurements on Pd(111) surface clearly indicating a typical precursor kinetics. Displacement of the chemisorbed CO by NO on Pd(111) surfaces was observed directly with NO + CO beams in the transient kinetics. It is also relatively easy to identify the rate-determining step directly from the MBI data and the same was demonstrated for the above reactions.


Molecular beam Kinetics Catalysis Nitric oxide Carbon monoxide Pd(111) 



We thank Profs. H-J. Freund and J. Libuda for co-operation and helpful discussions. CSG gratefully acknowledges Volkswagen foundation and Alexander von Humboldt foundation for financial support to build the molecular beam instrument at National Chemical Laboratory, Pune, India. CSG also thanks Royal Society-British Council for funding a bilateral project. KT thanks CSIR, New Delhi, for a research fellowship.


  1. 1.
    Langmuir I (1922) Trans Faraday Soc 17:607CrossRefGoogle Scholar
  2. 2.
    Ribeiro FH, Gerken CA, Rűpprechter G, Somorjai GA, Kellner CS, Coulston GW, Manzer LE, Abrams L (1998) J Catal 176:352CrossRefGoogle Scholar
  3. 3.
    Bonzel HP, Krebs HJ (1982) Surf Sci 117:639CrossRefGoogle Scholar
  4. 4.
    Bonzel HP (1987) Surf Sci Rep 8:43CrossRefGoogle Scholar
  5. 5.
    Nørskov JK, Holloway S, Lang ND (1984) Surf Sci 137:65CrossRefGoogle Scholar
  6. 6.
    Groff A (1998) Appl Phys A 67:627; Gravil PA, Toulhoat H (1999) Surf Sci 430:176Google Scholar
  7. 7.
    Campbell CT, Goodman DW (1982) Surf Sci 123:413CrossRefGoogle Scholar
  8. 8.
    Goodman DW, Kiskinova M (1981) Surf Sci 105:L265CrossRefGoogle Scholar
  9. 9.
    Kiskinova M, Goodman DW (1981) Surf Sci 108:64CrossRefGoogle Scholar
  10. 10.
    Goodman DW (1984) Appl Surf Sci 19:1CrossRefGoogle Scholar
  11. 11.
    Freund H-J, Bäumer M, Libuda J, Risse T, Rupprechter G, Shaikhutdinov S (2003) J Catal 216:223; Hoffmann J, Meusel I, Hartmann J, Libuda J, Freund H-J (2001) J Catal 204: 378; Johánek V, Schauermann S, Laurin M, Gopinath CS, Libuda J, Freund H-J (2004) J Phys Chem B 108:14244Google Scholar
  12. 12.
    Somorjai GA, Yang M (2003) Top Catal 24(1–4):61 and references thereinGoogle Scholar
  13. 13.
    Piccolo L, Becker C, Henry CR (2000) Appl Surf Sci 164:156; Piccolo L, Henry CR (2001) J Mol Catal A: Chemical 167:181; Judai K, Abbet S, Wrz AS, Heiz U, Henry CR (2004) J Am Chem Soc 126:2732Google Scholar
  14. 14.
    Henry CR (1998) Surf Sci Rep 31:23 and references thereinGoogle Scholar
  15. 15.
    Wallace WT, Goodman DW (2006) In: Richards R (eds) Surface and nanomolecular catalysis, CRC Pr I Llc., p 337; and references thereinGoogle Scholar
  16. 16.
    Choi Y-K , Zhu J, Grunes J, Bokor J, Somorjai GA (2003) J Phys Chem B 107:3340CrossRefGoogle Scholar
  17. 17.
    Kónya Z, Puntes VF, Kiricsi I, Zhu J, Ager JW, Ko MK, Frei H, Alivisatos P, Somorjai GA (2003) Chem Mater 15:1242CrossRefGoogle Scholar
  18. 18.
    Bowker M, Holroyd RP, Sharpe RG, Corneille JS, Francis SM, Goodman DW (1997) Surf Sci 370:113CrossRefGoogle Scholar
  19. 19.
    Pradeep T, Hegde MS (1991) Proc Ind Acad Sci (Chem Sci.) 103:591Google Scholar
  20. 20.
    Zaera F (2002) Int Rev Phys Chem 21:433CrossRefGoogle Scholar
  21. 21.
    Libuda J (2005) Chem Phys Chem 5:625; Libuda J, Freund H-J (2005) Surf Sci Rep 57:157Google Scholar
  22. 22.
    Kleyn AW (2003) Chem Soc Rev 32:87CrossRefGoogle Scholar
  23. 23.
    Nakao K, Ito S, Tomishige K, Kunimori K (2005) J Phys Chem B 109:17553; ibid, J Phys Chem B 109:24002Google Scholar
  24. 24.
    Thirunavukkarasu K (2006) Molecular beam studies of nitric oxide reduction reactions on Pd(111) surfaces Ph.D. Thesis University of PuneGoogle Scholar
  25. 25.
    Taylor KC (1993) Catal Rev Sci Eng 3:457; Shelef M, Graham GW (1994) Catal Rev Sci Eng 36:433; Kreuzer T, Lox SE, Lindner D, Leyrer J (1996) Catal Today 29:1Google Scholar
  26. 26.
    Ramsier RD, Gao Q, Waltenburg NH, Lee K-W, Nooij OW, Leerts L, Yates Jr JT (1994) Surf Sci 320:209; Ramsier RD, Gao Q, Waltenburg NH, Yates Jr JT (1994) J Chem Phys 100:6837Google Scholar
  27. 27.
    Schauermann S, Johánek V, Laurin M, Libuda J, Freund H-J (2003) Phys Chem Chem Phys 5:5139CrossRefGoogle Scholar
  28. 28.
    King DA, Wells MG (1972) Surf Sci 29:454CrossRefGoogle Scholar
  29. 29.
    Clausing P (1932) J Vac Sci Tech 8(5):636CrossRefGoogle Scholar
  30. 30.
    Pauly H (1988) In: Scoles G (ed) Atomic and molecular beam methods, vol 1. Oxford University Press, p 99Google Scholar
  31. 31.
    Scoles G (1988) In: Scoles G (ed) Atomic and molecular beam methods, vol 1. Oxford University Press, p 1Google Scholar
  32. 32.
    Thirunavukkarasu K, Thirumoorthy K, Libuda J, Gopinath CS (2005) J Phys Chem B 109:13272CrossRefGoogle Scholar
  33. 33.
    Thirunavukkarasu K, Thirumoorthy K, Libuda J, Gopinath CS (2005) . J Phys Chem B 109:13283CrossRefGoogle Scholar
  34. 34.
    Campbell CT, Valone SM (1985) J Vac Sci Technol A 3: 408CrossRefGoogle Scholar
  35. 35.
    Guevremont JM, Sheldon S, Zaera F (2000) Rev Sci Instrum 71:3869CrossRefGoogle Scholar
  36. 36.
    Fisher GL, Meserole CA (2005) J Vac Sci Technol A 23: 722CrossRefGoogle Scholar
  37. 37.
    Liu J, Xu M, Nordmeyer T, Zaera F (1995) J Phys Chem 99: 6167CrossRefGoogle Scholar
  38. 38.
    Conrad H, Ertl G, Koch J, Latta EE (1974) Surf Sci 43:462CrossRefGoogle Scholar
  39. 39.
    Thirunavukkarasu K, Nagarajan PS, Gopinath CS, Prasad SD (In Preparation)Google Scholar
  40. 40.
    Burghaus U, Jones IZ, Bowker M (2000) Surf Sci 454–456:326CrossRefGoogle Scholar
  41. 41.
    Sharpe RG, Bowker M (1996) Surf Sci 360:21CrossRefGoogle Scholar
  42. 42.
    Bowker M, Bennett RA, Jones IZ (2004) Top Catal 28:25CrossRefGoogle Scholar
  43. 43.
    Rainer DR, Vesecky SM, Koranne M, Oh WS, Goodman DW (1997) J Catal 167:234CrossRefGoogle Scholar
  44. 44.
    Prevot G, Henry CR (2002) J Phys Chem B 106:12191CrossRefGoogle Scholar
  45. 45.
    Prevot G, Meerson O, Piccolo L, Henry CR (2002) J Phys Cond Matt 14:4251CrossRefGoogle Scholar
  46. 46.
    Gopinath CS, Zaera F (2000) J Phys Chem B 104:3194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kandasamy Thirunavukkarasu
    • 1
  • Chinnakonda  S. Gopinath
    • 1
    Email author
  1. 1.Catalysis DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations