Catalysis Letters

, Volume 118, Issue 3–4, pp 231–237

Low Temperature Preparation and Characterization of N-doped and N-S-codoped TiO2 by Sol–gel Route

Article

Abstract

This paper reports a new method to prepare the N-doped and N-S-codoped anatase TiO2 photocatalysts at 100 °C. The as-prepared photocatalysts were characterized by means of XRD, Raman spectra, TEM, BET, UV–Vis diffuse reflectance spectra (DRS) and XPS. The results showed that the N-doping and N-S-codoping extended the absorbance spectra of TiO2 into visible region with different extent. The BET surface area of the N-S-codoped TiO2 photocatalysts was high up to 245 m2g−1. The results of degradation of methyl orange (MO) solution showed that the N-doped and N-S-codoped TiO2 photocatalysts exhibited higher photocatalytic activity than that of Degussa P-25 and the as-prepared pure TiO2 under visible irradiation. This property can be attributed to the results of synergetic effects of absorption in the visible light region, red shift in adsorption edge, good crystallization and large surface area of the as-prepared N-doped or N-S-codoped TiO2.

Keywords

Low temperature preparation Sol–gel N-S-codoped TiO2 Photocatalyst Visible light 

References

  1. 1.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  2. 2.
    Khan SUM, Mofareh Al-Shahry, William B (2002) Ingler Jr Sci 297:2243Google Scholar
  3. 3.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349CrossRefGoogle Scholar
  4. 4.
    Sun HQ, Bai Y, Cheng YP, Jin WQ, Xu NP (2006) Ind Eng Chem Res 45:4971CrossRefGoogle Scholar
  5. 5.
    Valentin CD, Pacchioni G, Selloni A (2005) Chem Mater 17:6656CrossRefGoogle Scholar
  6. 6.
    Yu JC, Ho W, Yu JG, Yip H, Wong PK, Zhao JC (2005) Environ Sci Technol 39:1175CrossRefGoogle Scholar
  7. 7.
    Sato S, Nakamura R, Abe S (2005) Appl Cata A-Gen 284:131CrossRefGoogle Scholar
  8. 8.
    Mwabora JM, Lindgren T, Avendano E, Jaramillo TF, Lu J, Lindquist S-E, Granqvist C-G (2004) J Phys Chem B 108:20193CrossRefGoogle Scholar
  9. 9.
    Guo Y, Zhang XW, Han GR (2006) Mat Sci Eng B 135:83CrossRefGoogle Scholar
  10. 10.
    Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V (2005) J Phys Chem B 109:5994CrossRefGoogle Scholar
  11. 11.
    Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414CrossRefGoogle Scholar
  12. 12.
    Ghicov A, Macak JM, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P (2006) Nano Lett 6:1080CrossRefGoogle Scholar
  13. 13.
    Nambu A, Graciani J, Rodriguez JA, Wu Q, Fujita E, Fdez Sanz J (2006) J Chem Phys 125:094706CrossRefGoogle Scholar
  14. 14.
    Li D, Haneda H, Hishita S, Ohashi N (2005) Mat Sci Eng B 117:67CrossRefGoogle Scholar
  15. 15.
    Zhang H, Banfield JF (2000) J Phys Chem B 104:3481CrossRefGoogle Scholar
  16. 16.
    Xiao L, Zhang J, Cong Y, Tian B, Chen F, Anpo M (2006) Catal Lett 111:207CrossRefGoogle Scholar
  17. 17.
    Li YZ, Lee NH, Hwang DS, Song JS, Lee EG, Kim SJ (2004) Langmuir 20:10838CrossRefGoogle Scholar
  18. 18.
    Balachandran U, Eror NG (1982) J Solid State Chem 42:276CrossRefGoogle Scholar
  19. 19.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813CrossRefGoogle Scholar
  20. 20.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169CrossRefGoogle Scholar
  21. 21.
    Yin S, Ihara K, Aita Y, Komatsu M, Sato T (2006) J Photoch Photobio A 179:105CrossRefGoogle Scholar
  22. 22.
    Bardi U (1990) Catal Lett 5:81CrossRefGoogle Scholar
  23. 23.
    Francisco MSP, Mastelaro VR (2001) J Phys Chem B 105:10515CrossRefGoogle Scholar
  24. 24.
    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A: General 265:115CrossRefGoogle Scholar
  25. 25.
    Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 32:364CrossRefGoogle Scholar
  26. 26.
    Rodriguez JA, Liu G, Jirsak T, Hrbek J, Chang Z, Dvorak J, Maiti A (2002) J Am Chem Soc 124:5242CrossRefGoogle Scholar
  27. 27.
    Rodriguez JA, Hrbek J, Chang Z, Dvorak J, Jirsak T, Maiti A (2002) Phys Rev B 65:235414CrossRefGoogle Scholar
  28. 28.
    Jang JS, Kim HG, Ji SM, Bae SW, Jung JH, Shon BH, Lee JS (2006) J Solid State Chem 179:1067CrossRefGoogle Scholar
  29. 29.
    Wang X, Yu JC, Chen Y, Wu L, Fu X (2006) Environ Sci Technol 40:2369CrossRefGoogle Scholar
  30. 30.
    Yuan J, Chen MX, Shi JW, Shangguan WF (2006) Int J Hydrogen Energy 31:1326CrossRefGoogle Scholar
  31. 31.
    Hong YC, Bang CU, Shin DH, Uhm HS (2005) Chem Phys Lett 413:454CrossRefGoogle Scholar
  32. 32.
    Chen H, Nambu A, Wen W, Graciani J, Zhong Z, Hanson JC, Fujita E, Rodriguez JA (2007) J Phys Chem C 111:1366CrossRefGoogle Scholar
  33. 33.
    Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1999) J Phys Chem B 103:4862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yi Xie
    • 1
  • Qingnan Zhao
    • 1
    • 2
  • Xiu Jian Zhao
    • 1
  • Yuanzhi Li
    • 1
  1. 1.Key Laboratory of Silicate Materials Science and EngineeringWuhan University of Technology, Ministry of EducationWuhanP.R. China
  2. 2.Material Testing Center of WuhanUniversity of TechnologyWuhanP.R. China

Personalised recommendations