Catalysis Letters

, Volume 116, Issue 3–4, pp 128–135

Rational design of gold catalysts with enhanced thermal stability: post modification of Au/TiO2 by amorphous SiO2 decoration

  • Haoguo Zhu
  • Zhen Ma
  • Steven H. Overbury
  • Sheng Dai


Au/TiO2 is highly active for CO oxidation, but it often suffers from sintering in high-temperature environments. In this work, we report on a novel design of gold catalysts, in which pre-formed Au/TiO2 catalysts were post decorated by amorphous SiO2 to suppress the agglomeration of gold particles. Even after being aged in O2–He at 700 °C, the SiO2-decorated Au/TiO2 was still active for CO oxidation at ambient temperature.


gold nanoparticles CO oxidation promotion sintering alkoxysilanes post decoration 


  1. 1.
    Somorjai G.A., Borodko Y.G. (2001) Catal. Lett. 76:1CrossRefGoogle Scholar
  2. 2.
    Thomas J.M., Raja R. (2005) Annu. Rev. Mater. Res. 35:315CrossRefGoogle Scholar
  3. 3.
    Xiao F.-S., Han Y., Yu Y., Meng X.J., Yang M., Wu S. (2002) J. Am. Chem. Soc. 124:888CrossRefGoogle Scholar
  4. 4.
    Collier P., Golunski S., Malde C., Breen J., Burch R. (2003) J. Am. Chem. Soc. 125:12414CrossRefGoogle Scholar
  5. 5.
    Tang Y.G., Xu R.R. (2005) Top. Catal. 35:1CrossRefGoogle Scholar
  6. 6.
    Haruta M., Daté M. (2001) Appl. Catal. A 222:427CrossRefGoogle Scholar
  7. 7.
    Choudhary T.V., Goodman D.W. (2002) Top. Catal. 21:25CrossRefGoogle Scholar
  8. 8.
    Kung H.H., Kung M.C., Costello C.K. (2003) J. Catal. 216:425CrossRefGoogle Scholar
  9. 9.
    Hashmi A.S.K., Hutchings G.J. (2006) Angew. Chem. Int. Ed. 45 :7896CrossRefGoogle Scholar
  10. 10.
    Bond G.C., C. Louis, Thompson D.T. (2006) Catalysis by Gold. Imperial College Press, LondonGoogle Scholar
  11. 11.
    Pattrick G., van der Lingen E., Corti C.W., Holliday R.J., Thompson D.T. (2004) Top. Catal. 30-31:273CrossRefGoogle Scholar
  12. 12.
    Yan W.F., Mahurin S.M., Overbury S.H., Dai S. (2006) Top. Catal. 39:199CrossRefGoogle Scholar
  13. 13.
    Yan W.F., Chen B., Mahurin S.M., Hagaman E.W., Dai S., Overbury S.H. (2004) J. Phys. Chem. B 108:2793CrossRefGoogle Scholar
  14. 14.
    Yan W.F., Mahurin S.M., Chen B., Overbury S.H., Dai S. (2005) J. Phys. Chem. B 109:15489CrossRefGoogle Scholar
  15. 15.
    Tai Y., Murakami J., Tajiri K., Ohashi F., Daté M., Tsubota S. (2004) Appl. Catal. A 268:183CrossRefGoogle Scholar
  16. 16.
    Venezia A.M., Liotta F.L., Pantaleo G., Beck A., Horvath A., Geszti O., Kocsonya A., Guczi L. (2006) Appl. Catal. A 310:114CrossRefGoogle Scholar
  17. 17.
    Dekkers M.A.P., Lippits M.J., Nieuwenhuys B.E. (1999) Catal. Today 54:381CrossRefGoogle Scholar
  18. 18.
    Xu X.Y., Li J.J., Hao Z.P., Zhao W., Hu C. (2006) Mater. Res. Bull. 41: 406CrossRefGoogle Scholar
  19. 19.
    Qian K., Huang W.X., Jiang Z.Q., Sun H.X. (2007) J. Catal. 248:137CrossRefGoogle Scholar
  20. 20.
    Zhu H.G., Liang C.D., Yan W.F., Overbury S.H., Dai S. (2006) J. Phys. Chem. B 110:10842CrossRefGoogle Scholar
  21. 21.
    H.G. Zhu, Z. Ma, J.C. Clark, Z.W. Pan, S.H. Overbury and S. Dai, Appl. Catal. A (2007) in pressGoogle Scholar
  22. 22.
    Okumura M., Nakamura S., Tsubota S., Nakamura T., Azuma M., Haruta M. (1998) Catal. Lett. 51:53CrossRefGoogle Scholar
  23. 23.
    Yang C.-M., Kalwei M., Schüth F., Chao K.-J. (2003) Appl. Catal. A 254:289CrossRefGoogle Scholar
  24. 24.
    Chi Y.-S., Lin H.-P., Mou C.-Y. (2005) Appl. Catal. A 284:199CrossRefGoogle Scholar
  25. 25.
    Budroni G., Corma A. (2006) Angew. Chem. Int. Ed. 45:3328CrossRefGoogle Scholar
  26. 26.
    Yan W.F., Mahurin S.M., Pan Z.W., Overbury S.H., Dai S. (2005) J. Am. Chem. Soc. 127:10480CrossRefGoogle Scholar
  27. 27.
    Grisel R.J.H., Nieuwenhuys B.E. (2001) J. Catal. 199:48CrossRefGoogle Scholar
  28. 28.
    Gluhoi A.C., Tang X., Marginean P., Nieuwenhuys B.E. (2006) Top. Catal. 39:101CrossRefGoogle Scholar
  29. 29.
    Z. Ma, S.H. Overbury and S. Dai, J. Mol. Catal. A (2007) in pressGoogle Scholar
  30. 30.
    Wolf A., Schüth F. (2002) Appl. Catal. A 226:1CrossRefGoogle Scholar
  31. 31.
    Wu S.-H., Zheng X.-C., Wang S.-R., Han D.-Z., Huang W.-P., Zhang S.-M. (2004) Catal. Lett. 96:49CrossRefGoogle Scholar
  32. 32.
    Yan W.F., Chen B., Mahurin S.M., Schwartz V., Mullins D.R., Lupini A.R., Pennycook S.J., Dai S., Overbury S.H. (2005) J. Phys. Chem. B 109:10676CrossRefGoogle Scholar
  33. 33.
    Cortie M.B. (2004) Gold Bull. 37:12Google Scholar
  34. 34.
    Min B.K., Wallace W.T., Goodman D.W. (2004) J. Phys. Chem. B 108:14609CrossRefGoogle Scholar
  35. 35.
    Kielbassa S., Kinne M., Behm R.J. (2004) J. Phys. Chem. B 108:19184CrossRefGoogle Scholar
  36. 36.
    Overbury S.H., Schwartz V., Mullins D.R., Yan W.F., Dai S. (2006) J. Catal. 241:56CrossRefGoogle Scholar
  37. 37.
    Li Q.Y., Chen Y.F., Zeng D.D., Gao W.M., Wu Z.J. (2005) J. Nanopart. Res. 7:295CrossRefGoogle Scholar
  38. 38.
    El-Toni A.M., Yin S., Sato T. (2006) J. Colloid Interf. Sci. 300:123CrossRefGoogle Scholar
  39. 39.
    Yuan Y.Z., Asakura K., Wan H.L., Tsai K., Iwasawa Y. (1996) Catal. Lett. 42:15CrossRefGoogle Scholar
  40. 40.
    Martra G., Prati L., Manfredotti C., Biella S., Rossi M., Coluccia S. (2003) J. Phys. Chem. B 107:5453CrossRefGoogle Scholar
  41. 41.
    Chou J., Franklin N.R., Baeck S.-H., Jaramillo T.F., McFarland E.W. (2004) Catal. Lett. 95:107CrossRefGoogle Scholar
  42. 42.
    Yan Z., Chinta S., Mohamed A.A., Fackler J.P., Goodman D.W. (2006) Catal. Lett. 111:15CrossRefGoogle Scholar
  43. 43.
    Menard L.D., Xu F.T., Nuzzo R.G., Yang J.C. (2006) J. Catal. 243:64CrossRefGoogle Scholar
  44. 44.
    Chiang C.-W., Wang A.Q., Mou C.-Y. (2006) Catal. Today 117:220CrossRefGoogle Scholar
  45. 45.
    Comotti M., Li W.C., Spliethoff B., Schüth F. (2006) J. Am. Chem. Soc. 128:917CrossRefGoogle Scholar
  46. 46.
    Fu X.Z., Zeltner W.A., Yang Q., Anderson M.A. (1997) J. Catal. 168:482CrossRefGoogle Scholar
  47. 47.
    Ek S., Iiskola E.I., Niinistö L., Vaittinen J., Pakkanen T.T., Keränen J., Auroux A. (2003) Langmuir 19:10601CrossRefGoogle Scholar
  48. 48.
    Hausmann D., Becker J., Wang S.L., Gordon R.G. (2002) Science 298: 402CrossRefGoogle Scholar
  49. 49.
    Poovarodom S., Bass J.D., Hwang S.J., Katz A. (2005) Langmuir 21:12348CrossRefGoogle Scholar
  50. 50.
    H.F. Yin, W.F. Yan and S. Dai, unpublished resultsGoogle Scholar
  51. 51.
    Deng X.Y., Ma Z., Yue Y.H., Gao Z. (2001) J. Catal. 204:200CrossRefGoogle Scholar
  52. 52.
    Schumacher B., Plzak V., Kinne M., Behm R.J. (2003) Catal. Lett. 89:109CrossRefGoogle Scholar
  53. 53.
    Horváth A., Beck A., Sárkány A., Stefler G., Varga Z., Geszti O., Tóth L., Guczi L. (2006) J. Phys. Chem. B 110:15417CrossRefGoogle Scholar
  54. 54.
    Guczi L., Pászti Z., Frey K., Beck A., Pető G., Daróczy C.S. (2006) Top. Catal. 39:137CrossRefGoogle Scholar
  55. 55.
    B. Solsona, M. Conte, Y. Cong, A. Carley and G. Hutchings, Chem. Commun. (2005) 2351.Google Scholar
  56. 56.
    P. Mohapatra, J. Moma, K.M. Parida, W.A. Jordaan and M.S. Scurrell, Chem. Commun. (2007) 1044Google Scholar
  57. 57.
    Z. Ma, S. Brown, S.H. Overbury and S. Dai, Appl. Catal. A (2007) submittedGoogle Scholar
  58. 58.
    Wang F., Lu G. (2007) Catal. Lett. 115:46CrossRefGoogle Scholar
  59. 59.
    Kanazawa T. (2006) Catal. Lett. 108:45CrossRefGoogle Scholar
  60. 60.
    Mahurin S., Bao L.L., Yan W.F., Liang C.D., Dai S. (2006) J. Non-Cryst. Solids 352:3280CrossRefGoogle Scholar
  61. 61.
    Z. Ma, F. Zaera, in: Encyclopedia of Inorganic Chemistry, eds. R.B. King, (Second Edition), (Chichester, 2005) pp. 1768Google Scholar
  62. 62.
    Gamble L., Henderson M.A., Campbell C.T. (1998) J. Phys. Chem. B 102:4536CrossRefGoogle Scholar
  63. 63.
    Ma Z., Zaera F. (2006) Surf. Sci. Rep. 61:229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Haoguo Zhu
    • 1
  • Zhen Ma
    • 1
  • Steven H. Overbury
    • 1
  • Sheng Dai
    • 1
  1. 1.Chemical Sciences Division and Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations