Catalysis Letters

, Volume 118, Issue 1–2, pp 50–54

Liquid phase hydrogenation of maleic anhydride over nickel catalyst supported on ZrO2–SiO2 composite aerogels

Article

Abstract

The promotional effects of ZrO2 on Ni/ZrO2–SiO2 catalysts were investigated by the comparison of Ni/SiO2 and Ni/ZrO2–SiO2 activity in the hydrogenation of maleic anhydride (MA) to γ-butyrolactone (GBL), and by the measurements of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), temperature-programmed reduction (TPR) and ammonia temperature-programmed desorption (NH3-TPD). The presence of ZrO2 led to an obvious increase of GBL yield. The promotion effect could be attributed to the possible presence of Zr4+ species on the catalyst surface owing to the higher ionicity of the Zr–O bonds, and to the proper interaction of Ni with the ZrO2-SiO2 support that is regulated by the presence of ZrO2.

Keywords

ZrO2–SiO2 composite aerogels γ-butyrolactone hydrogenation of maleic anhydride nickel 

References

  1. 1.
    U. Herrmann and G. Emig, Ind. Eng. Chem. Res. 371(1998) 759.Google Scholar
  2. 2.
    U. Herrmann and G. Emig, Ind. Eng. Chem. Res. 36(1997) 2885.Google Scholar
  3. 3.
    R.M. Deshpande, V.V. Buwa, C.V. Rode, R.V. Chaudhari and P.L. Mills, Catal. Commun 3 (2002) 269.CrossRefGoogle Scholar
  4. 4.
    Y. Hara and K. Takahashib, Catal. Surveys from Jpn 6 (2002) 73.CrossRefGoogle Scholar
  5. 5.
    S.M. Jung, E. Godard, S.Y. Jung, K.-C. Park and J.U. Choi, J. Mol. Catal. A: Chem 198 (2003) 297CrossRefGoogle Scholar
  6. 6.
    S.M. Jung, E. Godard, S.Y. Jung, K.-C. Park and J.U. Choi, Catal. Today 87 (2003) 171.Google Scholar
  7. 7.
    J. Xu, K. Sun, L. Zhang, Y. Ren and X. Xu, Catal. Commun 6 (2005) 462.CrossRefGoogle Scholar
  8. 8.
    J. Xu, K. Sun, L. Zhang, Y. Ren and X. Xu, Catal. Lett 107 (2006) 5CrossRefGoogle Scholar
  9. 9.
    H. Jeong, T.H. Kim, K.I. Kim and S.H. Cho, Fuel Proc. Tech 87 (2006) 497.CrossRefGoogle Scholar
  10. 10.
    T. Hu, H. Yin, R. Zhang, H. Wu, T. Jiang and Y. Wada, Catal. Commun 8 (2007) 193.CrossRefGoogle Scholar
  11. 11.
    Z.-G. Wu, Y.-X. Zhao and D.-S. Liu, Microporous Mesoporous Mater 68 (2004) 127.CrossRefGoogle Scholar
  12. 12.
    Z. Yong-Xiang, Q. Xiao-Qin, H. Xi-Cai, X. Xian-Lun and L. Dian-Sheng, Acta Phys.-Chim. Sin 19 (2003) 450.Google Scholar
  13. 13.
    S.K. Parida, S. Dash, S. Patel and B.K. Mishra, Adv. in Colloid and Interface Sci 121 (2006) 77.CrossRefGoogle Scholar
  14. 14.
    S. Damyanova, P. Grange and B. Delmon, J. Catal. 168 (1997) 421.CrossRefGoogle Scholar
  15. 15.
    J.A. Anderson, C. Fergusson, I. Rodífguez-Ramos and A. Guerrero-Ruiz, J. Catal 192 (2000) 344.CrossRefGoogle Scholar
  16. 16.
    S. Damyanova, L. Petrov, M.A. Centeno and P. Grange Appl. Catal. A: General 224 (2002) 271.CrossRefGoogle Scholar
  17. 17.
    C. Flego, L. Carluccio, C. Rizzo and C. Perego, Catal. Commun 2 (2001) 43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShanxi UniversityShanxi, TaiyuanP.R. China
  2. 2.Institute of Advanced ChemistryShanxi UniversityShanxi, TaiyuanP.R. China

Personalised recommendations