Catalysis Letters

, Volume 110, Issue 1–2, pp 1–6 | Cite as

Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO2–ZrO2 catalysts

  • Hyun-Seog Roh
  • Alexandru Platon
  • Yong WangEmail author
  • David L. King


Rh/CeO2–ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 °C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 °C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.


ethanol steam reforming deactivation regeneration low temperature Rh/CeO2–ZrO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Rostrup-Nielsen, in: Catalysis, Science and Technology, Vol. 5, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1984) p. 1Google Scholar
  2. 2.
    Cao, C., Xia, G., Holladay, J., Jones, E., Wang, Y. 2004Appl. Catal. A26219CrossRefGoogle Scholar
  3. 3.
    Song, C.S. 2002Catal. Today7717CrossRefGoogle Scholar
  4. 4.
    Velu, S., Suzuki, K. 2003Topics Catal.22235CrossRefGoogle Scholar
  5. 5.
    Huber, G.W., Shabaker, J.W., Dumesic, J.A. 2003Science3002075CrossRefGoogle Scholar
  6. 6.
    Cortright, R.D., Davda, R.R., Dumesic, J.A. 2002Nature418964CrossRefGoogle Scholar
  7. 7.
    Deluga, G.A., Salge, J.R., Schmidt, L.D., Verykios, X.E. 2004Science303993CrossRefGoogle Scholar
  8. 8.
    Kugai, J., Velu, S., Song, C. 2005Catal. Lett.101255CrossRefGoogle Scholar
  9. 9.
    Llorca, J., Piscina, P.R., Dalmon, J.A., Sales, J., Homs, N. 2003Appl.Catal. B43355CrossRefGoogle Scholar
  10. 10.
    Velu, S., Satoh, N., Gopinath, C.S., Suzuki, K. 2002Catal. Lett.82145CrossRefGoogle Scholar
  11. 11.
    Liguras, D.K., Kondarides, D.I., Verykios, X.E. 2003Appl. Catal. B43345CrossRefGoogle Scholar
  12. 12.
    Breen, J.P., Burch, R., Coleman, H.M. 2002Appl. Catal. B3965CrossRefGoogle Scholar
  13. 13.
    Fatsikostas, A.N., Kondarides, D.I., Verykios, X.E. 2002Catal. Today75145CrossRefGoogle Scholar
  14. 14.
    Srinivas, D., Satyanarayana, C.V.V., Potdar, H.S., Ratnasamy, P. 2003Appl. Catal. A246323CrossRefGoogle Scholar
  15. 15.
    Haryanto, A., Fernando, S., Murali, N., Adhikari, S. 2005Energy Fuels192098CrossRefGoogle Scholar
  16. 16.
    Fatsikostas, A.N., Verykios, X.E. 2004J. Catal.225439CrossRefGoogle Scholar
  17. 17.
    Haga, F., Nakajima, T., Miya, H., Mishima, S. 1997Catal. Lett.48223CrossRefGoogle Scholar
  18. 18.
    Vasudeva, K., Mitra, N., Umasankar, P., Dhingra, S.C. 1996Int. J. Hyrogen Energy2113CrossRefGoogle Scholar
  19. 19.
    Fishtik, I., Alexander, A., Datta, R., Geana, D. 2000Int. J. Hyrogen Energy2531CrossRefGoogle Scholar
  20. 20.
    Freni, S., Maggio, G., Cavallaro, S. 1996J. Power Sources6267CrossRefGoogle Scholar
  21. 21.
    Tsiakaras, P., Demin, A. 2001J. Power Sources102210CrossRefGoogle Scholar
  22. 22.
    Morgenstern, D.A., Fornango, J.P. 2005Energy Fuels191708CrossRefGoogle Scholar
  23. 23.
    Wang, W., Wang, Z., Ding, Y., Xi, J., Lu, G. 2002Catal. Lett.8163CrossRefGoogle Scholar
  24. 24.
    Diagne, C., Idriss, H., Kiennemann, A. 2002Catal. Commun.3565CrossRefGoogle Scholar
  25. 25.
    C. Diagne, H. Idriss, K. Pearson, M.A. Gomez-Garcia, A. Kiennemann, C. R. Chimie. 7 (2004) 617Google Scholar
  26. 26.
    Roh, H.-S., Wang, Y., King, D.L., Platon, A., Chin, Y.-H. 2006Catal. Lett.10815CrossRefGoogle Scholar
  27. 27.
    Potdar, H.S., Roh, H.-S., Jun, K.-W., Ji, M., Liu, Z.-W. 2002Catal. Lett.8495CrossRefGoogle Scholar
  28. 28.
    Roh, H.-S., Potdar, H.S., Jun, K.-W., Kim, J.-W., Oh, Y.-S. 2004Appl. Catal. A276231CrossRefGoogle Scholar
  29. 29.
    Palo, D.R., Holladay, J.D., Rozmiarek, R.T., Guzman-Leong, C.E., Wang, Y., Hu, J., Chin, Y.-H., Dagle, R.A., Baker, E.G. 2002J. Power Sources10828CrossRefGoogle Scholar
  30. 30.
    Dall’Agnol, C., Gervasini, A., Morazzoni, F., Pinna, F., Strukul, G., Zanderighi, L. 1985J. Catal.96106CrossRefGoogle Scholar
  31. 31.
    Jozwiak, W.K. 1986React. Kinet. Catal. Lett.30345CrossRefGoogle Scholar
  32. 32.
    Trovarelli, A. 1996Catal. Rev.-Sci. Eng.38439Google Scholar
  33. 33.
    Kaspar, J., Fornasiero, P., Graziani, M. 1999Catal. Today50285CrossRefGoogle Scholar
  34. 34.
    Rossignol, S., Gerard, F., Duprez, D. 1999J. Mater. Chem.91615CrossRefGoogle Scholar
  35. 35.
    Thammachart, M., Meeyoo, V., Risksomboon, T., Osuwan, S. 2001Catal. Today6853CrossRefGoogle Scholar
  36. 36.
    Roh, H.-S., Jun, K.-W., Dong, W.-S., Park, S.-E., Baek, Y.-S. 2001Catal. Lett.7431CrossRefGoogle Scholar
  37. 37.
    Roh, H.-S., Jun, K.-W., Dong, W.-S., Chang, J.-S., Park, S.-E., Joe, Y.-I. 2002J. Mol. Catal. A181137CrossRefGoogle Scholar
  38. 38.
    Roh, H.-S., Potdar, H.S., Jun, K.-W. 2004Catal. Today93–9539CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hyun-Seog Roh
    • 1
    • 2
  • Alexandru Platon
    • 1
  • Yong Wang
    • 1
    Email author
  • David L. King
    • 1
  1. 1.Institute for Interfacial CatalysisPacific Northwest National LaboratoryRichlandUSA
  2. 2.Korea Institute of Energy ResearchDaejeonSouth Korea

Personalised recommendations