Catalysis Letters

, Volume 109, Issue 3–4, pp 139–145 | Cite as

Performance of Pt/MgAPO-11 Catalysts in the Hydroisomerization of n-dodecane

  • Xiaomei Yang
  • Zhusheng Xu
  • Zhijian Tian
  • Huaijun Ma
  • Yunpeng Xu
  • Wei Qu
  • Liwu Lin

MgAPO-11 molecular sieves with varying Mg contents synthesized by the hydrothermal method were used as supports for bifunctional Pt/MgAPO-11 catalysts. MgAPO-11 molecular sieves and the corresponding catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), temperature-programmed desorption of NH3 (NH3-TPD), differential thermogravimetric (DTG) analysis, temperature-programmed reduction of H2 (H2-TPR), H2 chemisorption and catalytic reaction evaluation. The results indicated that the acidity generated via the substitution of Mg2+ for Al3+ in the framework increased with the Mg content. Acting as acidic components, the MgAPO-11 molecular sieves loaded with Pt were tested in the hydroisomerization of n-dodecane. Optimum isomer yield was obtained over the Pt/MgAPO-11 catalyst that had neither the highest acidity nor the highest Pt loading among the tested catalysts. In fact, the activity and the isomer yield both could attain a maximum on 0.5 wt.% Pt/MgAPO-11 catalysts with differing Mg contents. A lower Mg content resulted in an insufficient acidity, whilst a higher Mg content weakened the dehydrogenation/hydrogenation function of the Pt. These inappropriate balances between the acidic and the metallic functions of the catalysts would lead to low activities and isomer yields. On the other hand, the 0.5 wt.% Pt/MgAPO-11(3) catalyst was found to have a good balance between the acidic and the metallic functions, and thus exhibited both high activity and isomer yield in comparison with the conventional 0.5 wt.% Pt/SAPO-11 catalyst.


Hydroisomerization n-dodecane MgAPO-11 AEL molecular sieves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chica, A., Corma, A. 1999J. Catal.187167CrossRefGoogle Scholar
  2. [2]
    Weltkamp, J. 1982Ind. Eng. Chem. Prod. Res. Dev.21550CrossRefGoogle Scholar
  3. [3]
    Claude, M.C., Martens, J.A. 2000J. Catal.19039CrossRefGoogle Scholar
  4. [4]
    Weisz, P.B. 1962Adv. Catal.13137CrossRefGoogle Scholar
  5. [5]
    Coonradt, H.L., Garwood, W.E. 1964Ind. Eng. Chem. Process Des. Develop.338CrossRefGoogle Scholar
  6. [6]
    Steijns, M., Froment, G., Jacobs, P., Uytterhoeven, J., Weitkamp, J. 1981Ind. Eng. Chem. Prod. Res. Dev.20654CrossRefGoogle Scholar
  7. [7]
    S.J. Miller, US Patent 4 710 485 (1987).Google Scholar
  8. [8]
    Miller, S.J. 1994Micropor. Mater.2439CrossRefGoogle Scholar
  9. [9]
    Parlitz, B., Schreier, E., Zubowa, H.L., Eckelt, R., Lieske, E., Lischke, G., Fricke, R. 1995J. Catal.1551CrossRefGoogle Scholar
  10. [10]
    Campelo, J.M., Lafont, F., Marinas, J.M. 1995J. Catal.15611CrossRefGoogle Scholar
  11. [11]
    Mériaudeau, P., Tuan, V.A., Nghiem, V.T., Lai, S.Y., Hung, L.N., Naccache, C. 1997J. Catal.16955CrossRefGoogle Scholar
  12. [12]
    Campelo, J.M., Lafont, F., Marinas, J.M. 1997Appl. Catal. A15253CrossRefGoogle Scholar
  13. [13]
    Campelo, J.M., Lafont, F., Marinas, J.M. 1998Appl. Catal. A170139CrossRefGoogle Scholar
  14. [14]
    Höchtl, M., Jentys, A., Vinek, H. 2001Catal. Today65171CrossRefGoogle Scholar
  15. [15]
    Walendziewski, J., Pniak, B. 2003Appl. Catal. A25039CrossRefGoogle Scholar
  16. [16]
    Vieira, A., Tovar, M.A., Pfaff, C., Méndez, B., López, C.M., Machado, F.J., Goldwasser, J., Ramírezde Agudelo, M.M. 1998J. Catal.17760CrossRefGoogle Scholar
  17. [17]
    Höchtl, M., Jentys, A., Vinek, H. 1999Micropor. Mesopor. Mater.31271CrossRefGoogle Scholar
  18. [18]
    Hartmann, M., Elangovan, S.P. 2003Chem. Ing. Technol.2612Google Scholar
  19. [19]
    Elangovan, S.P., Hartmann, M. 2003J. Catal.217388Google Scholar
  20. [20]
    PCPDFWIN, Version 1.30, 1997, JCPDS-ICDD, File 46-0647.Google Scholar
  21. [21]
    Corà, F., Catlow, C.R.A., Civalleri, B., Orlando, R. 2003J. Phys. Chem. B10711866CrossRefGoogle Scholar
  22. [22]
    Waghmode, S.B., Saha, S.K., Kubota, Y., Sugi, Y. 2004J. Catal.227425Google Scholar
  23. [23]
    Lischke, G., Parlitz, B., Lohse, U., Shreier, E., Fricke, R. 1998Appl. Catal. A166351CrossRefGoogle Scholar
  24. [24]
    Hočevar, S., Batista, J., Kaučič, V. 1993J. Catal.139351CrossRefGoogle Scholar
  25. [25]
    Pozas, C., Lopez-Cordero, R., Gonzalez-Morales, J.A., Travieso, N., Roque-Malherbe, R. 1993J. Mol. Catal.83145CrossRefGoogle Scholar
  26. [26]
    Nur, H., Hamdan, H. 2001Mater. Res. Bull.36315CrossRefGoogle Scholar
  27. [27]
    Carson, R., Cooke, E.M., Dwyer, J., Hinchliffe, A., O’Malley, P.J. 1989Stud. Surf. Sci. Catal.4639CrossRefGoogle Scholar
  28. [28]
    Fernandez, R., Giotto, M.V., Pastore, H.O., Cardoso, D. 2002Micropor. Mesopor. Mater.53135CrossRefGoogle Scholar
  29. [29]
    López, C.M., Sousa, M.D., Campos, Y., Hernández, L., García, L. 2004Appl. Catal. A258195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Xiaomei Yang
    • 1
    • 2
  • Zhusheng Xu
    • 1
  • Zhijian Tian
    • 1
  • Huaijun Ma
    • 1
    • 2
  • Yunpeng Xu
    • 1
  • Wei Qu
    • 1
  • Liwu Lin
    • 1
    • 3
  1. 1.Laboratory of Natural Gas Utilization and Applied Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China

Personalised recommendations