Catalysis Letters

, Volume 109, Issue 3–4, pp 115–123 | Cite as

Non-metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte


Active non-metal catalysts for the Oxygen Reduction Reaction (ORR) were prepared by decomposition of acetonitrile vapor at 900°C over a pure alumina support, and supports containing 2 wt% Fe or 2 wt% Ni on alumina. The exposed alumina and metal in the samples were subsequently washed away with HF acid to purify the solid carbon material. The sample prepared with iron was the most active sample for the ORR, with only 100 mV greater overpotential than a commercial 20 wt% Pt / Vulcan Carbon catalyst. However, nitrogen-containing carbon deposited on pure alumina (which contained less than 1 ppm metal contamination) was also quite active, demonstrating that platinum or iron is not required for ORR activity. Characterization by XPS and TEM revealed that the more active samples had nanostructured carbon with more edge plane exposure than the less active tube structures formed from the nickel sample.


PEM fuel cells oxygen reduction nitrogen-containing carbon carbon nanostructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lefevre, M., Dodelet, J.-P. 2003Electrochimica Acta4827492760CrossRefGoogle Scholar
  2. [2]
    Lefevre, M., Dodelet, J.P., Bertrand, P. 2000J. Phys. Chem. B10411238CrossRefGoogle Scholar
  3. [3]
    Lefevre, M., Dodelet, J.P., Bertrand, P. 2002J. Phys. Chem. B.1068705CrossRefGoogle Scholar
  4. [4]
    Gupta, S., Tryk, D., Bae, I., Aldred, W., Yeager, E. 1989J. Appl. Electrochem.1919CrossRefGoogle Scholar
  5. [5]
    Faubert, G., Cote, R., Guay, D., Dodelet, J.P., Denes, G., Poleunis, C., Bertrand, P. 1998Electrochimica Acta431969CrossRefGoogle Scholar
  6. [6]
    Cote, R., Lalande, G., Guay, D., Dodelet, J.P., Denes, G. 1998J. Electrochem. Soc1452411Google Scholar
  7. [7]
    H. Wang, R. Cote, G. Faubert, D. Guay, J. P. Dodelet, J. Phys. Chem. B 103 (1999).Google Scholar
  8. [8]
    Lalande, G., Cote, R., Guay, D., Dodelet, J.P., Weng, L.T., Bertrand, P. 1997Electrochimi. Acta421379CrossRefGoogle Scholar
  9. [9]
    Faubert, G., Côté, R., Dodelet, J.P., Lefèvre, M., Bertrand, P. 1999Electrochimica Acta442589CrossRefGoogle Scholar
  10. [10]
    Jaouen, F., Marcotte, S., Dodelet, J.-P., Lindbergh, G. 2003J. Phys. Chem. B10713761386CrossRefGoogle Scholar
  11. [11]
    Ye, S., Vijh, A.K. 2003Electrochem. Comm5272275CrossRefGoogle Scholar
  12. [12]
    Matter, P.H., Ozkan, U.S., Zhang, L. 2006J. Catal2398396CrossRefGoogle Scholar
  13. [13]
    Gojkovic, S., Gupta, S., Savinell, R. 1999J. Electroanaly. Chem.4626372CrossRefGoogle Scholar
  14. [14]
    Gouerec, P., Biloul, A., Contamin, O., Scarbeck, G., Savy, M., Riga, J., Weng, L.T., Bertrand, P. 1997J. Electroanal. Chem42261CrossRefGoogle Scholar
  15. [15]
    Wiesner, K. 1986Electrochimica Acta3110731078CrossRefGoogle Scholar
  16. [16]
    Maldonado, S., Stevenson, K.J. 2004J. Phys. Chem. B1081137511383CrossRefGoogle Scholar
  17. [17]
    Maldonado, S., Stevenson, K.J. 2005J. Phys. Chem. B10947074716CrossRefGoogle Scholar
  18. [18]
    Faubert, G., Cote, R., Guay, D., Dodlet, J.P., Denes, G., Bertrand, P. 1998Electrochimica Acta43341CrossRefGoogle Scholar
  19. [19]
    Baker, R.T.K. 1989Carbon27315323CrossRefGoogle Scholar
  20. [20]
    Rodriguez, N.M. 1993J. Mater. Res832333250Google Scholar
  21. [21]
    Rodriguez, N.M., Chambers, A., Baker, R.T.K. 1995Langmuir1138623866CrossRefGoogle Scholar
  22. [22]
    Park, C., Keane, M.A. 2004J. Catal221386399CrossRefGoogle Scholar
  23. [23]
    Dupuis, A.-C. 2005Prog. in Mater. Sci.50929961CrossRefGoogle Scholar
  24. [24]
    Baker, R.T.K., Kim, M.S., Chambers, A., Park, C., Rodriguez, N.M. 1997Stud. in Surf. Sci. and Catal.11199109CrossRefGoogle Scholar
  25. [25]
    Nakajima, T., Koh, M. 1997Carbon35203CrossRefGoogle Scholar
  26. [26]
    Kvon, R., Il’inich, G., Chuvilin, A., Likholobov, V. 2000J. Mol. Catal. A: Chem.158413CrossRefGoogle Scholar
  27. [27]
    Liao, H.M., Sodhi, R.N.S., Coyle, T.W. 1993J. Vac. Sci. Technol. A1126812686CrossRefGoogle Scholar
  28. [28]
    Pels, J.R., Kapteijn, F., Moulijn, J.A., Zhu, Q., Thomas, K.M. 1995Carbon3316411653CrossRefGoogle Scholar
  29. [29]
    Casanovas, J., Ricart, J.M., Rubio, J., Illas, F., Jimenez-Mateos, J.M. 1996J. Am. Chem. Soc11880718076CrossRefGoogle Scholar
  30. [30]
    Kinoshita, K. 1988Carbon, Electrochemical and Physiochemical PropertiesWiley InterscienceNew YorkGoogle Scholar
  31. [31]
    Chen, P., Fryling, M.A., McCreery, R.L. 1995Analy. Chem.6731153112CrossRefGoogle Scholar
  32. [32]
    Yang, H.H., McCreery, R.L. 2000J. Electrochem. Soc.1473420CrossRefGoogle Scholar
  33. [33]
    Trasobares, S., Stephan, O., Colliex, C., Hsu, W.K., Kroto, H.W., Walton, D.R.M. 2002J. Chem. Phys.11689668972CrossRefGoogle Scholar
  34. [34]
    Xie, X.-L., Mai, Y.-W., Zhou, X.-P. 2005Mat. Sci. Eng., R: ReportsR4989112CrossRefGoogle Scholar
  35. [35]
    Audier, M., Coulon, M. 1985Carbon23317323CrossRefGoogle Scholar
  36. [36]
    Kock, A.J.H.M., Boxx, P.K., Boellaard, E., Klop, W., Geus, J.W. 1985J. Catal96468480CrossRefGoogle Scholar
  37. [37]
    Alstrup, I. 1988J. Catal109241251CrossRefGoogle Scholar
  38. [38]
    Bard, A.J., Faulkner, L.R. 2001Electrochemical Methods: Fundamentals and ApplicationsJohn Wiley and Sons LtdNYGoogle Scholar
  39. [39]
    Cline, K.K., McDermott, M.T., McCreery, R.L. 1994J. Phys. Chem9853145319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations