Advertisement

Catalysis Letters

, Volume 109, Issue 1–2, pp 71–76 | Cite as

Interaction of Acetonitrile with Oxygen on TiO2-supported Au Catalysts: FTIR–MS Study

  • János Raskó
  • János Kiss
Article

Abstract

The adsorption and surface reactions of acetonitrile and acetonitrile-oxygen gas mixture were studied on TiO2-supported Au catalysts at 300–673 K. FTIR spectra show different kinds of molecularly adsorbed CH3CN:acetonitrile can be bonded to weak Lewis acid sites (2295 cm−1), to strong Lewis acid sites (2337 cm−1) of titania; it can be coordinated linearly through the lone electron pair of the N atom on Au sites and η2 (C,N) CH3CN species can be formed on Au particles. CH3CN dissociates on Au sites, the resulting CN(a) can be oxidized in small extent by lattice oxygen and in a greater extent by gaseous oxygen into NCO surface species. The formation of other products (CH3NH2, H2, CO2, CH4, C2H4 and CO) was demonstrated and discussed.

Keywords

Titania Acetonitrile C2H4 CH3CN Surface Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavanagh, R.R., Yates, J.T.,Jr. 1980Surf. Sci.97L335Google Scholar
  2. 2.
    Kishi, K., Ikeda, S. 1981Surf. Sci.107405CrossRefGoogle Scholar
  3. 3.
    Friend, C.M., Mutterties, E.L., Gland, J.L. 1981J. Phys. Chem.853256CrossRefGoogle Scholar
  4. 4.
    Avery, N.R., Matheson, T.W., Sexton, B.A. 1985Appl. Surf. Sci.22384CrossRefGoogle Scholar
  5. 5.
    Ou, E.C., Young, P.A., Norton, P.R. 1992Surf. Sci.277123CrossRefGoogle Scholar
  6. 6.
    Murphy, K., Azad, S., Bennett, D.W., Tysoe, W.T. 2000Surf. Sci.4671CrossRefGoogle Scholar
  7. 7.
    Kang, D.-H., Trenary, M.J. 2002Phys. Chem. B1065710CrossRefGoogle Scholar
  8. 8.
    Bortnovsky, O., Sobalik, Z., Wichterlová, B., Bastl, Z. 2002J. Catal.210171CrossRefGoogle Scholar
  9. 9.
    Prinetto, E., Manzoli, M., Ghiotti, G., Ortiz, M.J.M., Tichit, D., Coq, B. 2004J. Catal.222238CrossRefGoogle Scholar
  10. 10.
    Pawalec, B., Damyanova, S., Mariscal, R., Fierro, J.L.G., Sobrados, I., Sanz, J., Petrov, L. 2004J. Catal.22386CrossRefGoogle Scholar
  11. 11.
    Szilágyi, T. 1988–1989Appl. Surf. Sci.3519CrossRefGoogle Scholar
  12. 12.
    Zhuand, J., Rusu, C.N., Yates, J.T.,Jr. 1999J. Phys. Chem. B1036957CrossRefGoogle Scholar
  13. 13.
    Chuang, C.-C., Wu, W.-C., Lee, M.-X., Lin, J.-L. 2000Phys. Chem. Chem. Phys.23877CrossRefGoogle Scholar
  14. 14.
    Chung, Y.W., Lo, W., Somorjai, G.A. 1977Surf. Sci.64588CrossRefGoogle Scholar
  15. 15.
    Uda, M., Nakamura, A., Yamamoto, T., Fujimoto, Y. 1998J. Electron. Spectrosc.88–91643CrossRefGoogle Scholar
  16. 16.
    Raskó, J., Kiss, J. 2006Appl. Catal. A-General298115CrossRefGoogle Scholar
  17. 17.
    Sexton, B.A., Avery, N.R. 1983Surf. Sci.12921CrossRefGoogle Scholar
  18. 18.
    Gray, J., Lord, R.C.J. 1957Chem. Phys.26690CrossRefGoogle Scholar
  19. 19.
    Nunney, T.S., Birtill, J.J., Raval, R. 1999Surf. Sci.427–428282CrossRefGoogle Scholar
  20. 20.
    Solymosi, F., Völgyesi, L., Sárkány, J. 1978J. Catal.54336CrossRefGoogle Scholar
  21. 21.
    F. Solymosi, L. Völgyesi and J. Raskó: Z. Phys. Chem. N.F. 120 (1980) 70 and refereces therein.Google Scholar
  22. 22.
    Solymosi, F., Bánsági, T., Süli-Zakar, T. 2003Phys. Chem. Chem. Phys.54724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Reaction Kinetics Research Group of the Hungarian Academy of Sciences at the University of SzegedSzegedHungary

Personalised recommendations