Advertisement

Catalysis Letters

, Volume 109, Issue 1–2, pp 25–35 | Cite as

Intermediates in the Methanol-to-hydrocarbons (MTH) Reaction: A Gas Phase Study of the Unimolecular Reactivity of Multiply Methylated Benzenium Cations

  • Stian Svelle
  • Morten Bjørgen
  • Stein Kolboe
  • Dietmar Kuck
  • Matthias Letzel
  • Unni Olsbye
  • Osamu Sekiguchi
  • Einar UggerudEmail author
Article

Abstract

In order to reach a deeper insight into the reaction mechanism of the zeolite catalyzed methanol to hydrocarbons reaction (MTH), the proposed reaction intermediates, i.e., a series of multiply methyl-substituted benzenium ions has been generated in the gas phase by chemical ionization. The fragmentations of the corresponding long-lived (metastable) ions have been investigated. While expulsion of H2 dominates for the lower homologues, elimination of methane dominates for the higher homologues, accompanied by increasing amounts CH 3 · . Loss of larger fragments relevant to the MTH-reaction, in particular ethene, propene and even butene, is also observed in minor amounts. This latter finding is consistent with a proposed reaction cycle in the MTH reaction known as the paring mechanism, and the feasibility of this mechanism has thus been demonstrated. The metastable gas-phase ions studied here are considerably more energetic than those residing in a zeolite catalyst, but they were found to decompose with markedly higher selectivity towards alkenes as compared to those activated by collision-induced dissociation (CID).

Keywords

gas phase ion chemistry mass spectrometry methylbenzene methanol-to-hydrocarbons zeolite heptamethylbenzenium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bjørgen, M., Bonino, F., Kolboe, S., Lillerud, K.-P., Zecchina, A., Bordiga, S. 2003J. Am. Chem. Soc.12515863CrossRefGoogle Scholar
  2. 2.
    Bjørgen, M., Bonino, F., Kolboe, S., Lillerud, K.-P., Zecchina, A., Bordiga, S. 2005Chem. Phys. Chem.6232Google Scholar
  3. 3.
    J. A. Martens and P. A. Jacobs, in: An Introduction to Zeolite Science and Practice, (eds.) H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jansen (Elsevier, Amsterdam, 2001) pp. 633–672.Google Scholar
  4. 4.
    Arstad, B., Kolboe, S., Swang, O. 2002J. Phys. Chem. B10612722CrossRefGoogle Scholar
  5. 5.
    S. Kolboe, in: Zeolites and Mesoporous Materials at the Dawn of the 21st Century, (eds.), A. Galarneau, F. Di Renzo, F. Fajula and J. Vedrinep (Elsevier, Amsterdam, 2001) pp. 3946–3954.Google Scholar
  6. 6.
    Haw, J.F., Song, W., Marcus, D.M., Nicholas, J.B. 2003Acc. Chem. Res.36317CrossRefGoogle Scholar
  7. 7.
    Dahl, I.M., Kolboe, S. 1993Catal. Lett.20329CrossRefGoogle Scholar
  8. 8.
    Dahl, I.M., Kolboe, S. 1994J. Catal.149458CrossRefGoogle Scholar
  9. 9.
    Dahl, I.M., Kolboe, S. 1996J. Catal.61304CrossRefGoogle Scholar
  10. 10.
    Mikkelsen, Ø., Rønning, P.O., Kolboe, S. 2000Microporous Mesoporous Mater.4095CrossRefGoogle Scholar
  11. 11.
    Arstad, B., Kolboe, S. 2001Catal. Lett.71209CrossRefGoogle Scholar
  12. 12.
    Arstad, B., Kolboe, S. 2001J. Am. Chem. Soc.1238137CrossRefGoogle Scholar
  13. 13.
    Gougen, P.W., Xu, T., Barich, D.H., Skloss, T.W., Song, W., Wang, Z., Nicholas, J.B. 1998J. Am. Chem. Soc.1202650CrossRefGoogle Scholar
  14. 14.
    Song, W., Haw, J.F., Nicholas, J.B., Heneghan, C.S. 2000J. Am. Chem. Soc.12210726CrossRefGoogle Scholar
  15. 15.
    Song, W., Fu, H., Haw, J.F. 2001J. Am. Chem. Soc.1234749CrossRefGoogle Scholar
  16. 16.
    Song, W., Fu, H., Haw, J.F. 2001J. Phys. Chem. B10512839CrossRefGoogle Scholar
  17. 17.
    Sassi, A., Wildman, M.A., Ahn, H.J., Prasad, P., Nicholas, J.B., Haw, J.F. 2002J. Phys. Chem. B1062294CrossRefGoogle Scholar
  18. 18.
    Arstad, B., Nicholas, J.B., Haw, J.F. 2004J. Am. Chem. Soc.1262991CrossRefGoogle Scholar
  19. 19.
    Bjørgen, M., Olsbye, U., Kolboe, S. 2003J. Catal.21530CrossRefGoogle Scholar
  20. 20.
    Bjørgen, M., Olsbye, U., Petersen, D., Kolboe, S. 2004J. Catal.2211CrossRefGoogle Scholar
  21. 21.
    Bjørgen, M., Olsbye, U., Svelle, S., Kolboe, S. 2004Catal. Lett.9337CrossRefGoogle Scholar
  22. 22.
    Sullivan, R.F., Egan, C.J., Langlois, G.E., Sieg, R.P. 1961J. Am. Chem. Soc.831156CrossRefGoogle Scholar
  23. 23.
    Cooks, R.G., Beynon, J.H., Caprioli, R.M., Lester, G.R. 1973Metastable IonsElsevierAmsterdamGoogle Scholar
  24. 24.
    U. P. Schlunegger, Angew. Chem. 87 (1975) 731; Angew. Chem. Int. Ed. Engl. 14 (1975) 679.Google Scholar
  25. 25.
    Kuck, D. 1990Mass Spectrom. Rev.9583CrossRefGoogle Scholar
  26. 26.
    D. Kuck, Angew. Chem. 112 (2000) 129; Angew. Chem. Int. Ed. 39 (2000) 125.Google Scholar
  27. 27.
    Kuck, D. 2002Int. J. Mass Spectrom.213101CrossRefGoogle Scholar
  28. 28.
    D. Kuck, in: Encyclopedia of Mass Spectrometry, Vol. 4, Topic B16, (ed.) N.M.M. Nibbering (Elsevier, Amsterdam, 2004).Google Scholar
  29. 29.
    D. Kuck, J. Schneider and H.-F. Grützmacher, J. Chem Soc. Perkin Trans. II (1985) 689.Google Scholar
  30. 30.
    Mormann, M., Kuck, D. 2002Int. J. Mass Spectrom.219497CrossRefGoogle Scholar
  31. 31.
    Mormann, M., Kuck, D. 2002J. Label. Comp. Radiopharm.45601CrossRefGoogle Scholar
  32. 32.
    Mormann, M., Kuck, D. 1999J. Mass Spectrom.34384CrossRefGoogle Scholar
  33. 33.
    Matthias, C., Anlauf, S., Weniger, K., Kuck, D. 2000Int. J. Mass Spectrom.199155CrossRefGoogle Scholar
  34. 34.
    Arstad, B., Kolboe, S., Swang, O. 2004J. Phys. Org. Chem.171023CrossRefGoogle Scholar
  35. 35.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision B.04, (Gaussian, Inc., Pittsburgh PA, 2003).Google Scholar
  36. 36.
    Munson, M.S.B., Field, F.H. 1967J. Am. Chem. Soc.891047CrossRefGoogle Scholar
  37. 37.
    Field, F.H. 1967J. Am. Chem. Soc.895328CrossRefGoogle Scholar
  38. 38.
    Williams, D.H., Hvistendahl, G. 1974J. Am. Chem. Soc.966755CrossRefGoogle Scholar
  39. 39.
    G. Hvistendahl and D.H. Williams, J. Chem. Soc. Perkin Trans. II (1975) 881.Google Scholar
  40. 40.
    H.-H. Bueker and E. Uggerud, J. Phys. Chem. 99 (1995) 5945.Google Scholar
  41. 41.
    Bueker, H.-H., Helgaker, T., Ruud, K., Uggerud, E. 1996J. Phys. Chem.10015388CrossRefGoogle Scholar
  42. 42.
    Zwier, T.S., Bierbaum, V.M., Ellison, G.B., Leone, S.R. 1980J. Chem. Phys.725426CrossRefGoogle Scholar
  43. 43.
    Weisshaar, J.C., Zwier, T.S., Leone, S.R. 1981J. Chem. Phys.754873CrossRefGoogle Scholar
  44. 44.
    Bowen, R.D., Harrison, A.G. 1981Org. Mass Spectrom.16159CrossRefGoogle Scholar
  45. 45.
    Río, E., López, R., Sordo, T.L. 1997J. Phys. Chem. A10110090CrossRefGoogle Scholar
  46. 46.
    M.N. Glukhovtsev, A. Pross, A. Nicolaides and L. Radom, J. Chem. Soc. Chem. Commun. (1995) 2347.Google Scholar
  47. 47.
    Olah, G.A., Staral, J.S., Asencio, G., Liang, G., Forsyth, D.A., Mateescu, G.D. 1978J. Am. Chem. Soc.1006299CrossRefGoogle Scholar
  48. 48.
    Stasko, D., Reed, C.A. 2002J. Am. Chem. Soc.1241148CrossRefGoogle Scholar
  49. 49.
    NIST Standard Reference Database Number 69 – March, 2003 Release, http://webbook.nist.gov/chemistry/.
  50. 50.
    D. Kuck, in: Encyclopedia of Mass Spectrometry, Vol. 4, Topic B12, (ed.), N.M.M. Nibbering (Elsevier, Amsterdam, 2004).Google Scholar
  51. 51.
    Salpin, J.-Y., Mormann, M., Tortajada, J., Nguyen, M.T., Kuck, D. 2003Eur. J. Mass Spectrom.9361CrossRefGoogle Scholar
  52. 52.
    B. Arstad, S. Kolboe and O. Swang, submitted to Phys. Chem. Chem. Phys.Google Scholar
  53. 53.
    Arstad, B., Kolboe, S., Swang, O. 2004J. Phys. Chem. B1082300CrossRefGoogle Scholar
  54. 54.
    Zatorski, W., Kryzanowski, S. 1978Acta Phys. Chem.24347Google Scholar
  55. 55.
    J.K.A. Clarke, R. Darcy, B.F. Hegarty, E. O’Donoghue, V. Abir-Ebrahimi and J.J. Rooney, J. Chem. Soc. Chem. Comm. (1986) 425.Google Scholar
  56. 56.
    G.J. Hutchings, in: Natural Gas Conversion, (eds.), A. Holmen, K.-J. Jens and S. Kolboe (Elsevier, Amsterdam, 1991) pp. 405–412.Google Scholar
  57. 57.
    S. Kolboe, in: Natural Gas Conversion, (eds.), A. Holmen, K.-J. Jens and S. Kolboe (Elsevier, Amsterdam, 1991) pp. 413–420.Google Scholar
  58. 58.
    Stöcker, M. 1999Microporous Mesoporous Mater.293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Stian Svelle
    • 1
  • Morten Bjørgen
    • 1
  • Stein Kolboe
    • 1
  • Dietmar Kuck
    • 2
  • Matthias Letzel
    • 2
  • Unni Olsbye
    • 1
  • Osamu Sekiguchi
    • 1
  • Einar Uggerud
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Fakultät für ChemieUniversität BielefeldBielefeldGermany

Personalised recommendations