Catalysis Letters

, Volume 106, Issue 3–4, pp 183–193 | Cite as

Preparation and Pretreatment Temperature Influence on Iron Species Distribution and N2O Decomposition in Fe–ZSM-5

  • K. Krishna
  • M. Makkee
Article

Abstract

Fe–ZSM-5 catalysts are prepared by FeCl3 sublimation between 320 and 850 °C. The catalysts are characterised by XRD, H2–TPR, NH3–TPD, NO adsorption by DRIFTs, and catalytic activity is evaluated for N2O decomposition. The influence of high temperature (850 °C) and pretreatment environment (air, He, He+H2O and H2) on the nature of iron species in Fe–ZSM-5 is further investigated by DRIFTs. High temperature FeCl3 sublimation results in decreased FeOx formation, easily reducible and narrow distribution of iron species in close proximity to alumina in Fe–ZSM-5. High temperature FeCl3 sublimation or pretreatment results in isolated hydroxylated iron species, –Fe(OH)2, which are not significant in Fe–ZSM-5 prepared by 320 °C FeCl3 sublimation followed by calcination below 600 °C. Fe–ZSM-5 prepared by high temperature FeCl3 sublimation show high N2O decomposition activity and the improved performance can be correlated to –Fe(OH)2 species in close proximity to alumina.

Keywords

Fe–ZSM-5 sublimation high temperature pretreatment isolated iron species hydroxylated iron species –Fe(OH)2 N2O decomposition DRIFTs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, H.Y., Sachtler, W.M.H. 1998Catal. Today4273CrossRefGoogle Scholar
  2. 2.
    Parmon, V.N., Panov, G.I., Uriarte, A., Noskov, A.S. 2005Catal. Today100115CrossRefGoogle Scholar
  3. 3.
    G. Carja, G. Delahay, C. Signorile and B. Coq, Chem. Commun. (2004) 1404.Google Scholar
  4. 4.
    Perez-Ramirez, J., Kapteijn, F., Mul, G., Moulijn, J.A. 2002Appl. Catal. B35227Google Scholar
  5. 5.
    Chen, H.Y., Voskoboinikov, T., Sachtler, W.M.H. 1999J. Catal.18691Google Scholar
  6. 6.
    Joyner, R., Stockenhuber, M. 1999J. Phys. Chem. B1035963CrossRefGoogle Scholar
  7. 7.
    Lobree, L.J., Hwang, I.C., Reimer, J.A., Bell, A.T. 1999J. Catal.186242CrossRefGoogle Scholar
  8. 8.
    Berlier, G., Ricchiardi, G., Bordiga, S., Zecchina, A. 2005J. Catal.229127Google Scholar
  9. 9.
    Bulushev, D.A., Kiwi-Minsker, L., Renken, A. 2004J. Catal.222389CrossRefGoogle Scholar
  10. 10.
    Perez-Ramirez, J. 2004J. Catal.227512Google Scholar
  11. 11.
    Wood, B.R., Reimer, J.A., Bell, A.T., Janicke, M.T., Ott, K.C. 2004J. Catal.225300CrossRefGoogle Scholar
  12. 12.
    Heyden, A., Peters, B., Bell, A.T., Keil, F.J. 2005J. Phys. Chem. B1091857Google Scholar
  13. 13.
    Heyden, A., Bell, A.T., Keil, F.J. 2005J. Catal.23326CrossRefGoogle Scholar
  14. 14.
    Jia, J.F., Pillai, K.S., Sachtler, W.M.H. 2004J. Catal.221119Google Scholar
  15. 15.
    Wood, B.R., Reimer, J.A., Bell, A.T., Janicke, M.T., Ott, K.C. 2004J. Catal.224148CrossRefGoogle Scholar
  16. 16.
    Marturano, P., Drozdova, L., Pirngruber, G.D., Kogelbauer, A., Prins, R. 2001Phys. Chem. Chem. Phys.35585CrossRefGoogle Scholar
  17. 17.
    Kumar, M.S., Schwidder, M., Grunert, W., Bruckner, A. 2004J. Catal.227384CrossRefGoogle Scholar
  18. 18.
    Marturano, P., Drozdova, L., Kogelbauer, A., Prins, R. 2000J. Catal.192236CrossRefGoogle Scholar
  19. 19.
    Battiston, A.A., Bitter, J.H., Groot, F.M.F., Overweg, A.R., Stephan,  O., Bokhoven, J.A., Kooyman, P.J., Spek, C., Vanko, G., Koningsberger, D.C. 2003J. Catal.213251CrossRefGoogle Scholar
  20. 20.
    K.Q. Sun, H.D. Zhang, H. Xia, Y.X. Lian, Y. Li, Z.C. Feng, P.L. Ying and C. Li, Chem. Commun. (2004) 2480.Google Scholar
  21. 21.
    Zhu, Q., Teeffelen, R.M., Santen, R.A., Hensen, E.J.M. 2004J. Catal.221575CrossRefGoogle Scholar
  22. 22.
    Pirngruber, G.D., Roy, P.K., Weiher, N. 2004J. Phys. Chem. B10813746CrossRefGoogle Scholar
  23. 23.
    Hensen, E.J.M., Zhu, Q., Hendrix, M.M.R.M., Overweg, A.R., Kooyman,  P.J., Sychev, M.V., Santen, R.A. 2004J. Catal.221560CrossRefGoogle Scholar
  24. 24.
    Roy, P.K., Pirngruber, G.D. 2004J. Catal.227164CrossRefGoogle Scholar
  25. 25.
    Waclaw, A., Nowinska, K., Schwieger, W., Zielinska, A. 2004Catal. Today9021Google Scholar
  26. 26.
    Hensen, E.J.M., Zhu, Q., Janssen, R.A.J, Magusin, P.C.M.M., Kooyman,  P.J., Santen, R.A. 2005J. Catal.233123Google Scholar
  27. 27.
    Hensen, E.J.M., Zhu, Q., Santen, R.A. 2005J. Catal.233136Google Scholar
  28. 28.
    K. Krishna and M. Makkee, Catal. Today (2005) accepted for publication.Google Scholar
  29. 29.
    Krishna, K., Seijger, G.B.F., Bleek, C.M., Makkee, M., Mul,  G., Calis, H.P.A. 2003Catal. Lett.86121CrossRefGoogle Scholar
  30. 30.
    Loeffler, E., Lohse, U., Peuker, C., Oehlmann, G., Kustov, L.M., Zholobenko, V.L., Kazansky, V.B. 1990Zeolites10266Google Scholar
  31. 31.
    Mauvezin, M., Delahay, G., Coq, B., Kieger, S., Jumas, J.C., Olivier-Fourcade,  J. 2001J. Phys. Chem. B105928CrossRefGoogle Scholar
  32. 32.
    McCleverty, J.A. 2004Chem. Rev.104403CrossRefGoogle Scholar
  33. 33.
    Hadjiivanov, K.I. 2000Cat. Rev. Sci. Eng.4271Google Scholar
  34. 34.
    Aparicio, L.M., Hall, W.K., Fang, S.M., Ulla, M.A., Millman, W.S., Dumesic, J.A. 1987J. Catal.108233CrossRefGoogle Scholar
  35. 35.
    Berlier, G., Spoto, G., Bordiga, S., Ricchiardi, G., Fisicaro, P., Zecchina,  A., Rossetti, I., Selli, E., Forni, L., Giamello, E., Lamberti,  C. 2002J. Catal.20864CrossRefGoogle Scholar
  36. 36.
    Berlier, G., Zecchina, A., Spoto, G., Ricchiardi, G., Bordiga, S., Lamberti, C. 2003J. Catal.215264CrossRefGoogle Scholar
  37. 37.
    Berlier, G., Ricchiardi, G., Bordiga, S., Zecchina, A. 2005J. Catal.229127Google Scholar
  38. 38.
    Mul, G., Perez-Ramirez, J., Kapteijn, F., Moulijn, J.A. 2002Catal. Lett.80129CrossRefGoogle Scholar
  39. 39.
    Mul, G., Zandbergen, M.W., Kapteijn, F., Moulijn, J.A., Perez-Ramirez,  J. 2004Catal. Lett.93113CrossRefGoogle Scholar
  40. 40.
    Nechita, M.T., Berlier, G., Ricchiardi, G., Bordiga, S., Zecchina, A. 2005Catal. Lett.10333CrossRefGoogle Scholar
  41. 41.
    Segawa, K.i., Chen, Y., Kubsh, J.E., Delgass, W.N., Dumesic, J.A., Hall, W.K. 1982J. Catal.76112Google Scholar
  42. 42.
    Hadjiivanov, K. 2000Catal. Lett.68157CrossRefGoogle Scholar
  43. 43.
    Kameoka, S., Nobukawa, T., Tanaka, S., Ito, S., Tomishige, K., Kunimori, K. 2003Phys. Chem. Chem. Phys.53328CrossRefGoogle Scholar
  44. 44.
    K. Krishna and M. Makkee, unpublished results.Google Scholar
  45. 45.
    Berlier, G., Bonino, F., Zecchina, A., Bordiga, S., Lamberti, C. 2003Chem. Phys. Chem.41073Google Scholar
  46. 46.
    Ferretti, A.M., Oliva, C., Forni, L., Berlier, G., Zecchina, A., Lamberti,  C. 2002J. Catal.20883CrossRefGoogle Scholar
  47. 47.
    Yuen, S., Chen, Y., Kubsh, J.E., Dumesic, J.A., Topsoe, N., Topsoe,  H. 1982J. Phys. Chem.863022CrossRefGoogle Scholar
  48. 48.
    Mul, G., Perez-Ramirez, J., Kapteijn, F., Moulijn, J.A. 2001Catal. Lett.777CrossRefGoogle Scholar
  49. 49.
    Sobalik, Z., Dedecek, J., Kaucky, D., Wichterlova, B., Drozdova, L., Prins, R. 2000J. Catal.194330Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • K. Krishna
    • 1
  • M. Makkee
    • 1
  1. 1.Reactor & Catalysis Engineering, DelftChemTechDelft University of TechnologyDelftThe Netherlands

Personalised recommendations