Advertisement

Catalysis Letters

, Volume 99, Issue 3–4, pp 187–191 | Cite as

Comparative preparation of MoO3/SiO2 catalysts using conventional and slurry impregnation method and activity in transesterification of dimethy oxalate with phenol

  • Jinlong Gong
  • Xinbin Ma
  • Xia Yang
  • Shengping Wang
  • Ning Gao
  • Dali Wang
Article

Abstract

Silica-supported MoO3 catalyst prepared by slurry impregnation method exhibits higher activity and dispersion capacity compared to the MoO3/SiO2 prepared conventionally. Slurry MoO3/water is used instead of the solution ammonium heptamolybdate. Highly dispersed amorphous Mo catalysts are obtained, which is closely related the catalytic activities, without calcination, waste solutions, and calcining nitrogeous gases. The dependence of catalytic activity on Mo loading for the slurry prepared catalysts was similar to the samples prepared by the conventional impregnation method, indicating the slurry method is a simple and clean alternative to the conventional one.

Keywords

diphenyl carbonate diphenyl oxalate methyl phenyl oxalate transesterification dimethyl oxalate MoO3/SiO2 catalysts slurry impregnation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shaikh, A.G., Sivaram, S. 1996Chem. Rev.96951CrossRefGoogle Scholar
  2. Ono, Y. 1996Pure Appl. Chem.68367Google Scholar
  3. Kuwano, R., Kondo, Y., Matsuyama, Y. 2003J. Am. Chem. Soc.12512104CrossRefGoogle Scholar
  4. K.J.L. Linsen, J. Libens and P.A. Jacobs, Chem. Commun. (2002) 2728.Google Scholar
  5. Kim, W.B., Lee, J.S. 1999J. Catal.185307CrossRefGoogle Scholar
  6. Kawada, A., Mitamura, S., Kobayashi, S. 1993J. Chem. Soc. Chem. Commun.141157CrossRefGoogle Scholar
  7. Barcelo, G., Grenouillat, D., Senet, J.P., Sennyey, G. 1990Tetrahedron46353CrossRefGoogle Scholar
  8. Hallgren, J.E., Mathews, R.O. 1979J. Organomet. chem.,175135Google Scholar
  9. Fu, Z.H., Ono, Y. 1997J. Mol. Catal. A: Chem.118293CrossRefGoogle Scholar
  10. Ishii, H., Goyal, M., Ueda, M., Takeuchi, K., Asai, M. 2000Appl. Catal. A: Gen.201101CrossRefGoogle Scholar
  11. Musso, H. 1963Angew. Chem. Int. Ed.27Google Scholar
  12. Gong, J.L., Ma, X.B., Yang, X. 2004Catal. Commun.5179CrossRefGoogle Scholar
  13. Ma, X.B., Guo, H.L., Wang, S.P. 2003Fuel Process Technol.83275CrossRefGoogle Scholar
  14. Matsuzaki, T., Nakamura, A. 1997Catal. Surv. Jpn.177CrossRefGoogle Scholar
  15. Trost, B. M. 1991Science2541471Google Scholar
  16. Vchtumi, S., Ataka, K., Matsuzaki, T. 1999J. Organomet. Chem.576279CrossRefGoogle Scholar
  17. H. Katsumasa, S. Ryoji and K. Kashiwagi, US. Pat. 5892089 (1998).Google Scholar
  18. Wang, S.P., Ma, X.B., Li, Z.H., Xu, G.H. 2002Natural Gas Chem. Eng.271(China)Google Scholar
  19. S.P. Wang, X.B. Ma, G.H. Li and J.L. Gong, J. Mol. Catal A: Chern. In press.Google Scholar
  20. N. Keigo, T. Shuji, H. Katsumasa and S. Ryoji, US Patent 5834615 (1997).Google Scholar
  21. N. Keigo, T. Shuji and N, Yuki, US Patent 5811573 (1998).Google Scholar
  22. N. Keigo, T. Shuji, H. Katsumasa, S. Ryoji, S. Akinori and W. Katsutoshi, US Patent 5922827 (1999).Google Scholar
  23. Gong, J.L., Ma, X.B., Wang, S.P. 2004J. Mol. Catal. A: Chem.207215CrossRefGoogle Scholar
  24. Ma, X.B., Gong, J.L., Wang, S.P. 2004Catal. Commun.5101CrossRefGoogle Scholar
  25. Zdrail, M. 2001Catal. Today65301CrossRefGoogle Scholar
  26. Xie, Y.C., Tang, Y.Q. 1990Adv. Catal.371CrossRefGoogle Scholar
  27. Lycourghiotis, A. 1995Stud. Surf. Sci. Catal.9195CrossRefGoogle Scholar
  28. Hillerov, E., Morishige, H., Inamura, K., Zdrail, M. 1997Appl. Catal. A: Gen.,1561Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jinlong Gong
    • 1
  • Xinbin Ma
    • 1
  • Xia Yang
    • 1
  • Shengping Wang
    • 1
  • Ning Gao
    • 1
  • Dali Wang
    • 1
  1. 1.Key Laboratory for Green Chemical Technology, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations