Catalysis Letters

, Volume 107, Issue 3–4, pp 143–147 | Cite as

Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis

Article

We used density functional theory to examine whether doping oxides makes them better oxidation catalysts. We studied in detail titania doped with Au and used CO oxidation as a test of the oxidizing power of the system. We show that doping with Au, Ag, Cu, Pt, Pd, Ni reduces dramatically the bond of surface oxygen to titania or ceria, making them better oxidation catalysts. These calculations suggest that it is worthwhile to explore doped oxides as oxidation catalysts.

Keywords

density functional theory TiO2(110) molecular oxygen carbon monoxide CO oxidation reaction mechanism doped oxides Au Ag Cu Ni Pd Pt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M. 2003Science301935CrossRefGoogle Scholar
  2. 2.
    Fu, Q., Deng, W., Saltsburg, H., Flytzani-Stephanopoulos, M. 2005Appl. Catal. B5657Google Scholar
  3. 3.
    Guzman, J., Carrettin, S., Corma, A. 2005J. Am. Chem. Soc.1273286CrossRefGoogle Scholar
  4. 4.
    Venezia, A.M., Pantaleo, G., Longo, A., Di Carlo, G., Casaletto, M.P., Liotta, F.L., Deganello, G. 2005J. Phys. Chem. B1092821CrossRefGoogle Scholar
  5. 5.
    Guzman, J., Gates, B.C. 2004J. Am. Chem. Soc.1262672CrossRefGoogle Scholar
  6. 6.
    Calla, J.T., Davis, R.J. 2005Catal. Lett.9921CrossRefGoogle Scholar
  7. 7.
    Hodge, N.A., Kiely, C.J., Whyman, R., Siddiqui, M.R.H., Hutchings, G.J., Pankhurst, Q.A., Wagner, F.E., Rajaram, R.R., Golunski, S.E. 2002Catal. Today72133CrossRefGoogle Scholar
  8. 8.
    Nishihata, Y., Mizuki, J., Akao, T., Tanaka, H., Uenishi, M., Kimura,  M., Okamoto, T., Hamada, N. 2002Nature418164CrossRefGoogle Scholar
  9. 9.
    Tanaka, H., Mizuno, N., Misono, M. 2003Appl. Catal. A244371Google Scholar
  10. 10.
    Tanaka, H., Tan, I., Uenishi, M., Kimura, M., Dohmae, K. 2001Top. Catal.16/1763CrossRefGoogle Scholar
  11. 11.
    Tanaka, H., Taniguchi, M., Kajita, N., Uenishi, M., Tan, I., Sato, N., Narita, K., Kimura, M. 2004Top. Catal.30/31389CrossRefGoogle Scholar
  12. 12.
    Bond, G.C. 2002Catal. Today725CrossRefGoogle Scholar
  13. 13.
    Haruta, H., Date, M. 2001Appl. Cat. A222427Google Scholar
  14. 14.
    Haruta, M. 2004Gold Bull.3727Google Scholar
  15. 15.
    Meyer, R., Lemire, C., Shaikhutdinor, S.K., Freund, H.-J. 2004Gold Bull.3772Google Scholar
  16. 16.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C. 1992Phys. Rev. B466671Google Scholar
  17. 17.
    Perdew, J.P., Burke, K., Wang, Y. 1996Phys. Rev. B5416533CrossRefGoogle Scholar
  18. 18.
    Kresse, G., Hafner, J. 1993Phys. Rev. B47558CrossRefGoogle Scholar
  19. 19.
    Kresse, G., Hafner, J. 1994Phys. Rev. B4914251CrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmuller, J. 1996Phys. Rev. B5411169CrossRefGoogle Scholar
  21. 21.
    Kresse, G., Furthmuller, J. 1996Comput. Mater. Sci.615CrossRefGoogle Scholar
  22. 22.
    Vanderbilt, D. 1990Phys. Rev. B417892CrossRefGoogle Scholar
  23. 23.
    Makov, G., Payne, M.C. 1995Phys. Rev. B514014CrossRefGoogle Scholar
  24. 24.
    Press, W.H., Teukolsky, S.A., Flannery, W.T., Vetterling, B.P. 1992Numerical Recipes in Fortran: The Art of Scientific ComputingCambridge University PressCambridgeGoogle Scholar
  25. 25.
    H. Jónsson, G. Mills and K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics “Computer Simulation of Rare Events and the Dynamics of Classical and Quantum Condensed-Phase Systems”, B.J. Berne, G. Cicotti and D.F. eds, Coker (World Scientific Publishing Company, Singapore, 1998) ch. 18.Google Scholar
  26. 26.
    The results report for the remaining of the paper were obtained on a slab composed of 12 layers (4 triple-layers) in order to reduce the computational cost associated with the 15 layers slab. The energy to form a bridging oxygen vacancy in AuxTi1-xO2(110) oscillates with the slab thickness, as it does for the undoped oxide (see Ref. 28). However, regardless of slab thickness doping produces a dramatic lowering of the energy to form a vacancy and variations due to slab thickness do not alter our qualitative conclusions.Google Scholar
  27. 27.
    V. Shapovalov and H. Metiu, In preparation (2005).Google Scholar
  28. 28.
    Wu, X.Y., Selloni, A., Nayak, S.K. 2004J. Chem. Phys.1204512Google Scholar
  29. 29.
    Pacchioni, G., Frigoli, F., Ricci, D., Weil, J.A. 2001Phys. Rev. B63054102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations