Advertisement

Potential of breastmilk in stem cell research

  • Seema TripathyEmail author
  • Shikha Singh
  • Saroj Kumar Das
Full Length Review
  • 15 Downloads

Abstract

Breastmilk is a dynamic, multi-faceted, and complex fluid containing a plethora of biochemical and cellular components that execute developmental effects or differentiation program, providing nourishment and immunity to newborns. Recently, it was reported that breastmilk contains a heterogeneous population of naïve cells, including pluripotent stem cells, multipotent stem cells, immune cells, and non-immune cells. The stem cells derived from breastmilk possess immune privilege and non-tumorigenic properties. Thus, breastmilk may represent an ideal source of stem cells collected by non-perceive procedure than other available sources. Thus, this “maternally originating natural regenerative medicine” may have innumerable applications in clinical biology, cosmetics, and pharmacokinetics. This review describes the efficient integrated cellular system of mammary glands, the impressive stem cell hierarchy of breastmilk, and their possible implications in translational research and therapeutics.

Keywords

Breastmilk Stem cells Hierarchy Immune privilege Translational research 

Notes

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, for providing financial support vide reference number SR/WOS-A/LS-13/2016 dated 06.09.2016 under the Women Scientist Scheme to carry out this work. They are grateful to Ms. Swati Singh, Ms. Karisma Agrawal, and Ms. Aishwarya Nayak for critical reading and editing of the manuscript. Thanks are due to Dr. Gulam Hussain Syed (Scientist-D, Institute of Life Science, Bhubaneswar) and Dr. Rajkumar Joshi (Associate Professor, Ramadevi Women’s University, Bhubaneswar) for their valuable suggestions to improve the quality of the manuscript. The authors are indebted to the Head of the Department, Centre for Biotechnology, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar-751 003, India, for providing the necessary facilities. The authors also acknowledge the contribution of Dr. Ritendra Mishra, Mumbai, India who helped in the copy editing and proofreading of the manuscript.

Funding

This study was funded by Department of Science and Technology, Government of India, for providing financial support under vide reference number SR/WOS-A/LS-13/2016 dated 06.09.2016 under Women Scientist Scheme.

Compliance with ethical standards

Conflict of interest

The authors do not have any conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aoyama K, Matsuoka K, Teshima T (2010) Breastmilk and transplantation tolerance. Chimerism 1(1):9–20.  https://doi.org/10.4161/chim.1.1.11996 CrossRefGoogle Scholar
  2. Atwood CS, Hovey RC, Glover JP, Chepko G, Ginsburg E, Robison WG, Vonderhaar BK (2000) Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice. J Endocrinol 167(1):39.  https://doi.org/10.1677/joe.0.1670039 CrossRefPubMedGoogle Scholar
  3. Baer PC, Kuçi S, Krause M, Kuçi Z, Zielen S, Geiger H, Bader P, Schubert R (2013) Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev 22(2):330–339.  https://doi.org/10.1089/scd.2012.0346 CrossRefPubMedGoogle Scholar
  4. Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 60(1):49–74.  https://doi.org/10.1016/j.pcl.2012.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82(6):463–472.  https://doi.org/10.1002/ajh.20707 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bion V, Lockett GA, Soto-Ramírez N, Zhang H, Venter C, Karmaus W, Holloway JW, Arshad SH (2016) Evaluating the efficacy of breastfeeding guidelines on long-term outcomes for allergic disease. Allergy 71(5):661–670.  https://doi.org/10.1111/all.12833 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128(3):445–458.  https://doi.org/10.1016/j.cell.2007.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boras-Granic K, Chang H, Grosschedl R, Hamel PA (2006) Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol 295(1):219–231CrossRefGoogle Scholar
  9. Briere CE, McGrath JM, Jensen T, Matson A, Finck C (2016) Breast milk stem cells: current science and implications for preterm infants. Adv Neonatal Care 16(6):410–419.  https://doi.org/10.1097/ANC.0000000000000338 CrossRefPubMedGoogle Scholar
  10. Briere CE, Jensen T, McGrath JM, Young EE, Finck C (2017) Stem-like cell characteristics from breast milk of mothers with preterm infants as compared to mothers with term infants. Breastfeed Med 12:174–179.  https://doi.org/10.1089/bfm.2017.0002 CrossRefPubMedGoogle Scholar
  11. Brooker BE (1980) The epithelial cells and cell fragments in human milk. Cell Tissue Res 210(2):321–332CrossRefGoogle Scholar
  12. Buescher ES, Pickering LK (1986) Polymorphonuclear leukocytes in human colostrum and milk. In: Howell RR, Morriss FH, Pickering LK (eds) Human milk in infant nutrition and health. Charles C. Thomas Publisher, Springfield, pp 160–173Google Scholar
  13. Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, Sant’Angelo D, Laouar Y, Laouar A (2016) Transfer of maternal immune cells by breastfeeding: maternal cytotoxic T lymphocytes present in breast milk localize in the Peyer’s patches of the nursed infant. PLoS ONE 11:e0156762CrossRefGoogle Scholar
  14. Chagastelles PC, Nardi NB (2011) Biology of stem cells: an overview. Kidney Int Suppl 1(3):63–67.  https://doi.org/10.1038/kisup.2011.15 CrossRefGoogle Scholar
  15. Cohnheim J (1867) Ueber entzundung und eiterung. Path Anat Physiol Klin Med 40: 1–79. 95059459; Beneke, Rudolf, 1861?- nr 00037756Google Scholar
  16. Cowin P, Wysolmerski J (2010) Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol 2:a003251.  https://doi.org/10.1101/cshperspect.a003251 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, Mitoulas LR, Piper KM, Choolani MA, Chong YS et al (2007) Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res 329(1):129–136.  https://doi.org/10.1007/s00441-007-0390-x CrossRefPubMedGoogle Scholar
  18. Cui X, Hartanto Y, Zhang H (2017) Advances in multicellular spheroids formation. J R Soc Interface 14(127):20160877.  https://doi.org/10.1098/rsif.2016.0877 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dehghanifard A, Shahjahani M, Soleimani M, Saki N (2013) The emerging role of mesenchymal stem cells in tissue engineering. Int J Hematol Oncol Stem Cell Res 7(1):46–47PubMedPubMedCentralGoogle Scholar
  20. Deugnier M-A, Teulière J, Faraldo MM, Thiery JP, Glukhova MA (2002) The importance of being a myoepithelial cell. Breast Cancer Res 4(6):224–230CrossRefGoogle Scholar
  21. Dieterich CM, Felice JP, O’Sullivan E, Rasmussen KM (2013) Breastfeeding and health outcomes for the mother-infant dyad. Pediatr Clin North Am 60(1):31–48.  https://doi.org/10.1016/j.pcl.2012.09.010 CrossRefPubMedGoogle Scholar
  22. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(suppl1):59–72CrossRefGoogle Scholar
  23. Dunbar ME, Wysolmerski JJ (1999) Parathyroid hormone-related protein: a developmental regulatory molecule necessary for mammary gland development. J Mammary Gland Biol Neoplasia 4(1):21–34CrossRefGoogle Scholar
  24. Dutta P, Burlingham WJ (2010) Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism 1(1):2–10.  https://doi.org/10.4161/chim.1.1.12667 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Engel S (1953) An investigation of the origin of the colostrum cells. J Anat 87(4):362–366PubMedPubMedCentralGoogle Scholar
  26. Esmailpour T, Huang T (2012) TBX3 promotes human embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. Stem Cells 30(10):2152–2163.  https://doi.org/10.1002/stem.1187 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ewaschuk JB, Unger S, Harvey S, O’Connor DL, Field CJ (2011) Effect of pasteurization on immune components of milk: implications for feeding preterm infants. Appl Physiol Nutr Metab 36(2):175–182.  https://doi.org/10.1139/h11-008 CrossRefPubMedGoogle Scholar
  28. Fan Y (2011) The search for stem cells in human breast milk. Ph.D. thesis, National University of SingaporeGoogle Scholar
  29. Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK (2010) Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS ONE 5(12):e14421.  https://doi.org/10.1371/journal.pone.0014421 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefGoogle Scholar
  31. Fu N, Lindeman GJ, Visvader JE (2014) The mammary stem cell hierarchy. Curr Top Dev Biol 107:133–160.  https://doi.org/10.1016/B978-0-12-416022-4.00005-6 CrossRefPubMedGoogle Scholar
  32. Galbaugh T, Feeney YB, Clevenger CV (2010) Prolactin receptor-integrin cross-talk mediated by SIRP alpha in breast cancer cells. Mol Cancer Res 8(10):1413–1424.  https://doi.org/10.1158/1541-7786.MCR-10-0130 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J et al (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269(2):360–380.  https://doi.org/10.1016/j.ydbio.2003.12.034 CrossRefPubMedGoogle Scholar
  34. Gjorevski N, Nelson CM (2011) Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12(8):581–593.  https://doi.org/10.1038/nrm3168 CrossRefPubMedGoogle Scholar
  35. Han C, Takayama S, Park J (2015) Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system. Sci Rep 5:11891.  https://doi.org/10.1038/srep11891 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hassiotou F (2012) The cellular hierarchy of human breastmilk: novel insights to breastmilk stem cells. Ph.D. thesis, The University of Western AustraliaGoogle Scholar
  37. Hassiotou F, Geddes DT (2015) Immune cell–mediated protection of the mammary gland and the infant during breastfeeding. Adv Nutr 6(3):267–275.  https://doi.org/10.3945/an.114.007377 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hassiotou F, Hartmann PE (2014) At the dawn of a new discovery: the potential of breastmilk stem cells. Adv Nutr 5(6):770–778.  https://doi.org/10.3945/an.114.006924 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger A-J, Metzger P, Hartmann PE (2012) Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells (Dayton, Ohio) 30(10):2164–2174.  https://doi.org/10.1002/stem.1188 CrossRefGoogle Scholar
  40. Hassiotou F, Heath B, Ocal O, Filgueira L, Geddes D, Hartmann P, Wilkie T (2014) Breastmilk stem cell transfer from mother to neonatal organs (216.4). FASEB J 28(suppl 1):216Google Scholar
  41. Hassiotou F, Geddes DT, Blancafort P, Filgueira L, Hartmann PE (2015) Breastmilk stem cells: recent advances and future prospects. In: Bhattacharya N, Stubblefield P (eds) Regenerative medicine. Springer, London.  https://doi.org/10.1007/978-1-4471-6542-2_18 CrossRefGoogle Scholar
  42. Hens JR, Wysolmerski JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 7(5):220–224.  https://doi.org/10.1186/bcr1306 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Holmquist DG, Papanicolaou GN (1956) The exfoliative cytology of the mammary gland during pregnancy and lactation. Ann NY Acad Sci 63(6):1422–1435CrossRefGoogle Scholar
  44. Hosseini SM, Talaei-khozani T, Sani M, Owrangi B (2014) Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int.  https://doi.org/10.1155/2014/807896 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hovey RC, Trott JF (2004) Morphogenesis of mammary gland development. Adv Exp Med Biol 554(2):219–228CrossRefGoogle Scholar
  46. Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D (2013) Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechnology 65(3):385–393.  https://doi.org/10.1007/s10616-012-9492-8 CrossRefPubMedGoogle Scholar
  47. Irmak MK, Oztas Y, Oztas E (2012) Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase. Theor Biol Med Model 9:20.  https://doi.org/10.1186/1742-4682-9-20 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Javed A, Lteif A (2013) Development of the Human Breast. Semin Plast Surg 27(1):5–12.  https://doi.org/10.1055/s-0033-1343989 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946.  https://doi.org/10.2217/rme.10.72 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS (2016) Breastmilk-derived mesenchymal stem cells in vitro are likely to be mediated through epithelial-mesenchymal transition. Breastfeed Med 11:152.  https://doi.org/10.1089/bfm.2016.0023 CrossRefPubMedGoogle Scholar
  51. Kaingade P, Somasundaram I, Nikam A, Behera P, Kulkarni S, Patel J (2017) Breast milk cell components and its beneficial effects on neonates: need for breast milk cell banking. J Pediatr Neonat Individual Med 6:e060115.  https://doi.org/10.7363/060115 CrossRefGoogle Scholar
  52. Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39(11):1987–1994CrossRefGoogle Scholar
  53. Kim JS, Choi HW, Choi S, Do JT (2011) Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 4(1):1–8CrossRefGoogle Scholar
  54. Klingemann H, Matzilevich D, Marchand J (2008) Mesenchymal stem cells—sources and clinical applications. Transfus Med Hemoth 35(4):272–277.  https://doi.org/10.1159/000142333 CrossRefGoogle Scholar
  55. Kørbling M, Estrov ZN (2003) Adult stem cells for tissue repair—a new therapeutic concept? New Engl J Med 349(6):570–582.  https://doi.org/10.1056/NEJMra022361 CrossRefPubMedGoogle Scholar
  56. Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125(10):1921–1930PubMedGoogle Scholar
  57. Kramer MS (2010) “Breast is best”: the evidence. Early Hum Dev 86(11):729–732.  https://doi.org/10.1016/j.earlhumdev.2010.08.005 CrossRefPubMedGoogle Scholar
  58. Kuijk EW, de Sousa Chuva, Lopes SM, Geijsen N, Macklon N, Roelen BA (2010) The different shades of mammalian pluripotent stem cells. Hum Reprod Update 17(2):254–271.  https://doi.org/10.1093/humupd/dmq035 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Long T, Wu R, Lu X, Deng J, Qin D, Zhang Y (2015) Urine-derived stem cells for tissue repair in the genitourinary system. J Stem Cell Res Ther 5:317.  https://doi.org/10.4172/2157-7633.1000317 CrossRefGoogle Scholar
  60. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1(4):533–557.  https://doi.org/10.1002/wdev.35 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Melnik BC, John SM, Schmitz G (2013) Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 12:103.  https://doi.org/10.1186/1475-2891-12-103 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134.  https://doi.org/10.1007/s10911-010-9178-9 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mou XZ, Lin J, Chen JY, Li YF, Wu XX, Xiang BY, Li CY, Ma JM, Xiang C (2013) Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells. J Zhejiang Univ Sci B 14(11):961–972.  https://doi.org/10.1631/jzus.B1300081 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nandi S (1959) Hormonal control of mammogenesis and lactogenesis in the C3H/He Crgl mouse. Univ Calif Publ Zool 65:1–128Google Scholar
  65. Oakes SR, Hilton HN, Ormandy CJ (2006) The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res 8(2):207.  https://doi.org/10.1186/bcr1411 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ozkan H, Tuzun F, Kumral A, Duman N (2012) Milk kinship hypothesis in light of epigenetic knowledge. Clin Epigenetics 4:14.  https://doi.org/10.1186/1868-7083-4-14 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pang WW, Hartmann PE (2007) Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia 12(4):211–221.  https://doi.org/10.1007/s10911-007-9054-4 CrossRefPubMedGoogle Scholar
  68. Patki S, Kadam S, Chandra V, Bhonde R (2010) Human breastmilkis a rich source of multipotent mesenchymal stem cells. Hum Cell 23(2):35–40.  https://doi.org/10.1111/j.1749-0774.2010.00083.x CrossRefPubMedGoogle Scholar
  69. Pichiri G, Lanzano D, Piras M, Dessì A, Reali A, Puddu M, Noto A, Fanos V, Coni C, Faa G, Coni P et al (2016) Human breast milk stem cells: a new challenge for perinatologists. J Pediatr Neonat Individual Med 5:e050120.  https://doi.org/10.7363/050120 CrossRefGoogle Scholar
  70. Qin D, Long T, Deng J, Zhang Y (2014) Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther 5(3):69.  https://doi.org/10.1186/scrt458 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rasmussen KM (2007) Association of maternal obesity before conception with poor lactation performance. Annu Rev Nutr 27:103–121.  https://doi.org/10.1146/annurev.nutr.27.061406.093738 CrossRefPubMedGoogle Scholar
  72. Rasmussen KM, Hilson JA, Kjolhede CL (2001) Obesity may impair lactogenesis II. J Nutr 131(11):3009S–3011S.  https://doi.org/10.1093/jn/131.11.3009S CrossRefPubMedGoogle Scholar
  73. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404.  https://doi.org/10.1038/74447 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Richter A, Nissen N, Mailänder P, Stang F, Siemers F, Kruse C, Danner S (2013) Mammary gland-derived nestin-positive cell populations can be isolated from human male and female donors. Stem Cell Res Ther 4:2681–2694.  https://doi.org/10.1186/scrt229 CrossRefGoogle Scholar
  75. Roy S, Gascard P, Dumont N, Zhao J, Pan D, Petrie S, Margeta M, Tlsty TD (2013) Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc Natl Acad Sci USA 110(12):4598–4603.  https://doi.org/10.1073/pnas.1218682110 CrossRefPubMedGoogle Scholar
  76. Sage EK, Thakrar RM, Janes SM (2016) Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 18(11):1435–1445.  https://doi.org/10.1016/j.jcyt.2016.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sani M, Hosseini SM, Salmannejad M, Aleahmad F, Ebrahimi S, Jahanshahi S, Talaei-Khozani T (2015) Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int 39(5):611–618.  https://doi.org/10.1002/cbin.10432 CrossRefPubMedGoogle Scholar
  78. Schedin P, Mitrenga T, McDaniel S, Kaeck M (2004) Mammary ECM composition and function are altered by reproductive state. Mol Carcinog 41(4):207–220.  https://doi.org/10.1002/mc.20058 CrossRefPubMedGoogle Scholar
  79. Seymour T, Twigger A-J, Kakulas F (2015) Pluripotency genes and their functions in the normal and aberrant breast and brain. Int J Mol Sci 16(11):27288–27301.  https://doi.org/10.3390/ijms161126024 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88.  https://doi.org/10.1038/nature04372 CrossRefPubMedGoogle Scholar
  81. Simerman AA, Phan JD, Dumesic DA, Chazenbalk GD (2016) Muse cells: nontumorigenic pluripotent stem cells present in adult tissues—a paradigm shift in tissue regeneration and evolution. Stem Cells Int.  https://doi.org/10.1155/2016/1463258 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Smith JP (2015) Markets, breastfeeding and trade in mothers’ milk. Int Breastfeed 10:9.  https://doi.org/10.1186/s13006-015-0034-9 CrossRefGoogle Scholar
  83. Smith GH, Chepko G (2001) Mammary epithelial stem cells. Microsc Res Tech 52(2):190–203.  https://doi.org/10.1002/1097-0029(20010115)52:2 CrossRefPubMedGoogle Scholar
  84. Sternlicht MD (2006) Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 8(1):201.  https://doi.org/10.1186/bcr1368 CrossRefPubMedGoogle Scholar
  85. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872.  https://doi.org/10.1016/j.cell.2007.11.019 CrossRefGoogle Scholar
  86. Thomas E, Zeps N, Cregan M, Hartmann P, Martin T (2011) 14-3-3σ (sigma) regulates proliferation and differentiation of multipotent p63-positive cells isolated from human breastmilk. Cell Cycle 10(2):278–284.  https://doi.org/10.4161/cc.10.2.14470 CrossRefPubMedGoogle Scholar
  87. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefGoogle Scholar
  88. Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC (2015) Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod 92(1):25.  https://doi.org/10.1095/biolreprod.114.121368 CrossRefPubMedGoogle Scholar
  89. Trott JF, Vonderhaar BK, Hovey RC (2008) Historical perspectives of prolactin and growth hormone as mammogens, lactogens and galactagogues—agog for the future! J Mammary Gland Biol Neoplasia 13(1):3–11.  https://doi.org/10.1007/s10911-008-9064-x CrossRefPubMedGoogle Scholar
  90. Twigger A-J, Hepworth AR, Tat Lai C, Chetwynd E, Stuebe AM, Blancafort P, Hartmann PE, Geddes DT, Kakulas F (2015) Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep 5:12933.  https://doi.org/10.1038/srep12933 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Underwood MA (2012) Human milk for the premature infant. Pediatr Clin North Am 60(1):189–207.  https://doi.org/10.1016/j.pcl.2012.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S (2004) Identification of the mammary line in mouse by Wnt10b expression. Dev Dyn 229(2):349–356.  https://doi.org/10.1002/dvdy.10441 CrossRefPubMedGoogle Scholar
  93. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1):87–101.  https://doi.org/10.1083/jcb.200611114 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28(11):1143–1158.  https://doi.org/10.1101/gad.242511.114 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Watson CJ (2006) Key stages in mammary gland development—involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 8(2):203.  https://doi.org/10.1186/bcr1401 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Weil BR, Manukyan MC, Herrmann JL, Abarbanell AM, Poynter JA, Wang Y, Meldrum DR (2011) The immunomodulatory properties of mesenchymal stem cells: implications for surgical disease. J Surg Res 167(1):78–86.  https://doi.org/10.1016/j.jss.2010.07.019 CrossRefPubMedGoogle Scholar
  97. Witkowska-Zimny M, Kaminska-El-Hassan E (2017) Cells of human breast milk. Cell Mol Biol Lett 22:11.  https://doi.org/10.1186/s11658-017-0042-4 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Witkowska-Zimny M, Kamińska-El-Hassan E, Wójtowicz J (2017) Human breastmilk as a source of progenitor/stem cells. Post N Med 09:460–463Google Scholar
  99. Zhang Y, Andl T, Yang SH, Teta M, Liu F, Seykora JT, Tobias JW, Piccolo S, Schmidt-Ullrich R, Nagy A et al (2008) Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135(12):2161–2172.  https://doi.org/10.1242/dev.017459 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Seema Tripathy
    • 1
    Email author
  • Shikha Singh
    • 1
  • Saroj Kumar Das
    • 1
  1. 1.Centre for BiotechnologySiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations