Cell and Tissue Banking

, Volume 19, Issue 4, pp 457–472 | Cite as

Effect of x-rays and gamma radiations on the bone mechanical properties: literature review

  • Noor Rahman
  • Rafiullah Khan
  • Saeed Badshah
Mini Review


The bone auto grafting, isografting, allografting and xenografting are used for defective bone replacement or treatment in almost all living species. The X-ray and Gamma (electromagnetic radiation) sterilization performed on the donor bone graft to prevent toxicity or migration of virus/bacterial infections from donors to reciver. Conversely, X-ray and Gamma radiation deteriorates the bone mechanical properties and bone become more susceptible to fracture. Fracture toughness as well as other mechanical properties of bone change with these radiations. In this literature review the effect of the X-rays and Gamma radiation on bone mechanical properties are discussed. All relevant literature was reviewed. After reviewing the literature only the research relating to the effect of X-rays and Gamma radiations on bone mechanical properties are included. Literature studies showed significant effect of the X-rays and Gamma radiations on the mechanical properties of the bones. In some studies the differences exists on the doses of radiations which were discussed in this study. The high energetic electromagnetic radiation (X-rays and Gamma radiations) changed/modify the collagen network of the bone, which reduced the mechanical properties of bone; however these changes depend on the radiation dose.


Bone X-ray radiations Mechanical properties Collagen Fracture toughness Elastic modulus 


Compliance with ethical standards

Conflict of interest

None of the author has any financial or non-financial competing interests in this review paper. There is no source of funding for this research. This is a review paper so there is no practical experimentation of human and bovine bones in this research.


  1. Akkus O, Rimnac CM (2001) Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res 19(5):927–934CrossRefPubMedGoogle Scholar
  2. Akkus O, Belaney RM, Das P (2005) Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. J Orthop Res 23(4):838–845CrossRefPubMedGoogle Scholar
  3. Asselmeier MA, Caspari RB, Bottenfield S (1993) A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med 21(2):170–175CrossRefPubMedGoogle Scholar
  4. Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scandinavian J Med Sci Sports 15(4):231–240CrossRefGoogle Scholar
  5. Bailey AJ, Rhodes DN, Cater CW (1964) Irradiation-induced crosslinking of collagen. Radiat Res 22(4):606–621CrossRefPubMedGoogle Scholar
  6. Balooch M, Habelitz S, Kinney JH, Marshall SJ, Marshall GW (2008) Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol 162(3):404–410CrossRefPubMedPubMedCentralGoogle Scholar
  7. Balsly CR, Cotter AT, Williams LA, Gaskins BD, Moore MA, Wolfinbarger Jr L (2008) Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank 9(4):289–298CrossRefPubMedGoogle Scholar
  8. Bandstra ER, Pecaut MJ, Anderson ER, Willey JS, De Carlo F, Stock SR, Bateman TA (2008) Long-term dose response of trabecular bone in mice to proton radiation. Radiat Res 169(6):607–614CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barth HD, Launey ME, MacDowell AA, Ager JW, Ritchie RO (2010) On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 46(6):1475–1485CrossRefPubMedGoogle Scholar
  10. Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO (2011a) Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32(34):8892–8904CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO (2011b) Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32(34):8892–8904CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bauer TW, Muschler GF (2000) Bone graft materials: an overview of the basic science. Clin Orthop Relat Res 371:10–27CrossRefGoogle Scholar
  13. Bowes JH, Moss JA (1962) The effect of gamma radiation on collagen. Radiat Res 16(3):211–223CrossRefPubMedGoogle Scholar
  14. Bright RW, Burstein AH (1978) Material properties of preserved cortical bone. Trans Orthop Res Soc 3:210–215Google Scholar
  15. Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus: an estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 240:129–136Google Scholar
  16. Burstein AH, Zika JM, Heiple KG, Klein Leroy (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57(7):956–961CrossRefPubMedGoogle Scholar
  17. Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL (2014) Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone 61:71–81CrossRefPubMedGoogle Scholar
  18. Campbell DG, Li P (1999) Sterilization of HIV with irradiation: relevance to infected bone allografts. Aust N Z J Surg 69(7):517–521CrossRefPubMedGoogle Scholar
  19. Cornu O, Boquet J, Nonclercq O, Docquier PL, Van Tomme J, Delloye C, Banse X (2011) Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. Cell Tissue Bank 12(4):281–288CrossRefPubMedGoogle Scholar
  20. Dauber JH, Paradis IL, Dummer JS (1990) Infectious complications in pulmonary allograft recipients. Clin Chest Med 11(2):291–308PubMedGoogle Scholar
  21. Dougherty G (1996) Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis. Med Eng Phys 18(7):557–568CrossRefPubMedGoogle Scholar
  22. Eastlund T (1995) Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant 4(5):455–477CrossRefPubMedGoogle Scholar
  23. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Actabiomaterialia 8(9):3191–3200Google Scholar
  24. Fideler BM, Vangsness CT, Moore T, Li Z, Rasheed S (1994) Effects of gamma irradiation on the human immunodeficiency virus. A study in frozen human bone-patellar ligament-bone grafts obtained from infected cadavera. J Bone Joint Surg Am 76(7):1032–1035CrossRefPubMedGoogle Scholar
  25. Fideler BM, Vangsness CT, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23(5):643–646CrossRefPubMedGoogle Scholar
  26. Fujimori E (1985) Changes induced by ozone and ultraviolet light in type I collagen. Eur J Biochem 152(2):299–306CrossRefPubMedGoogle Scholar
  27. Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9(2):209–218CrossRefPubMedGoogle Scholar
  28. Gorna K, Gogolewski S (2003) The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab 79(3):465–474CrossRefGoogle Scholar
  29. Gouk SS, Lim TM, Teoh SH, Sun WQ (2008) Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res Part B Appl Biomater 84(1):205–217CrossRefPubMedGoogle Scholar
  30. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci 103(47):17741–17746CrossRefPubMedGoogle Scholar
  31. Hallfeldt KKJ, Stützle H, Puhlmann M, Kessler S, Schweiberer L (1995) Sterilization of partially demineralized bone matrix: the effects of different sterilization techniques on osteogenetic properties. J Surg Res 59(5):614–620CrossRefPubMedGoogle Scholar
  32. Hamer AJ, Colwell A, Eastell R (1995, August). Biomechanical and biochemical-changes in cortical allograft bone after gamma-irradiation. J Bone Mineral Res (Vol. 10, pp. S339–S339). 238 Main ST, Cambridge, MA 02142: Blackwell Science Publ Inc CambridgeGoogle Scholar
  33. Hansen P, Haraldsson BT, Aagaard P, Kovanen V, Avery NC, Qvortrup K, Magnusson SP (2010) Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology. J Appl Physiol 108(1):47–52CrossRefPubMedGoogle Scholar
  34. Hong SI, Hong SK, Wallace JM, Kohn DH (2009) Ultrastructural observation of electron irradiation damage of lamellar bone. J Mater Sci Mater Med 20(4):959–965CrossRefPubMedGoogle Scholar
  35. Islam A, Chapin K, Moore E, Ford J, Rimnac C, Akkus O (2016) Gamma radiation sterilization reduces the high-cycle fatigue life of allograft bone. Clin Orthop Related Res 474(3):827–835CrossRefGoogle Scholar
  36. Kaminski A, Jastrzebska A, Grazka E, Marowska J, Gut G, Wojciechowski A, Uhrynowska-Tyszkiewicz I (2012) Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods. Cell Tissue Bank 13(3):363–374CrossRefPubMedGoogle Scholar
  37. Kayurapan A, Makadelok S, Waikakul S (2010) Effect of gamma sterilisation and deep-freezing on length and strength of fascia latae. J Orthop Surg 18(1):68CrossRefGoogle Scholar
  38. Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Ann Rev Mater Res 40:25–53CrossRefGoogle Scholar
  39. McAllister DR, Joyce MJ, Mann BJ, Vangsness CT (2007) Allograft updates the current status of tissue regulation, procurement, processing, and sterilization. Am J Sports Med 35(12):2148–2158CrossRefPubMedGoogle Scholar
  40. McGilvray KC, Santoni BG, Turner AS, Bogdansky S, Wheeler DL, Puttlitz CM (2011) Effects of 60Co gamma radiation dose on initial structural biomechanical properties of ovine bone—patellar tendon—bone allografts. Cell Tissue Banking 12(2):89–98CrossRefPubMedGoogle Scholar
  41. Mcnerny EMB (2014) Collagen cross-linking as a determinant of bone quality: the importance of cross-linking to mechanical properties as explored by cross-link inhibition and exercise.
  42. McNerny E, Gong B, Morris MD, Kohn DH (2015) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30(3):455–464CrossRefPubMedGoogle Scholar
  43. Mellonig JT, Prewett AB, Moyer MP (1992) HIV inactivation in a bone allograft. J Periodontol 63(12):979–983CrossRefPubMedGoogle Scholar
  44. Mitchell EJ, Stawarz AM, Kayacan R, Rimnac CM (2004) The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone. JBJS 86(12):2648–2657CrossRefGoogle Scholar
  45. Nguyen H, Morgan DA, Forwood MR (2007a) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8(2):93–105CrossRefPubMedGoogle Scholar
  46. Nguyen H, Morgan DA, Forwood MR (2007b) Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation? Cell Tissue Bank 8(2):81–91CrossRefPubMedGoogle Scholar
  47. Nguyen H, Morgan DA, Forwood MR (2011) Validation of 11 kGy as a radiation sterilization dose for frozen bone allografts. J Arthroplast 26(2):303–308CrossRefGoogle Scholar
  48. Nguyen H, Cassady AI, Bennett MB, Gineyts E, Wu A, Morgan DA, Forwood MR (2013) Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts. Bone 57(1):194–200CrossRefPubMedGoogle Scholar
  49. Pruss A, Baumann B, Seibold M, Kao M, Tintelnot K, von Versen R, Göbel UB (2001) Validation of the sterilization procedure of allogeneic avital bone transplants using peracetic acid–ethanol. Biologicals 29(2):59–66CrossRefPubMedGoogle Scholar
  50. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21(2):195–214CrossRefPubMedGoogle Scholar
  51. Saito M, Marumo K (2016) Collagen cross-links as a determinant of bone quality. In: Shimada Y, Miyakoshi N (eds) Osteoporosis in orthopedics (pp. 35–54). Springer, JapanCrossRefGoogle Scholar
  52. Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcified Tissue Int 79(3):160–168CrossRefGoogle Scholar
  53. Salehpour A, Butler DL, Proch FS, Schwartz HE, Feder SM, Doxey CM, Ratcliffe A (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13(6):898–906CrossRefPubMedGoogle Scholar
  54. Schmidt T, Hoburg A, Broziat C, Smith MD, Gohs U, Pruss A, Scheffler S (2012) Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Bank 13(3):387–400CrossRefPubMedGoogle Scholar
  55. Singhal A, Deymier-Black AC, Almer JD, Dunand DC (2011) Effect of high-energy X-ray doses on bone elastic properties and residual strains. J Mech Behav Biomed Mater 4(8):1774–1786CrossRefPubMedGoogle Scholar
  56. Tyan YC, Liao JD, Lin SP, Chen CC (2003) The study of the sterilization effect of gamma ray irradiation of immobilized collagen polypropylene nonwoven fabric surfaces. J Biomed Mater Res Part A 67(3):1033–1043CrossRefGoogle Scholar
  57. Vangsness CT, Garcia IA, Mills CR, Kainer MA, Roberts MR, Moore TM (2003) Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med 31(3):474–481CrossRefPubMedGoogle Scholar
  58. Vastel L, Meunier A, Siney H, Sedel L, Courpied JP (2004) Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts. Biomaterials 25(11):2105–2110CrossRefPubMedGoogle Scholar
  59. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Bouxsein ML (2006) Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39(5):1073–1079CrossRefPubMedGoogle Scholar
  60. Voggenreiter G, Ascherl R, Blümel G, Schmit-Neuerburg KP (1994) Effects of preservation and sterilization on cortical bone grafts. Arch Orthop Trauma Surg 113(5):294–296CrossRefPubMedGoogle Scholar
  61. Willett TL, Burton B, Woodside M, Wang Z, Gaspar A, Attia T (2015) γ-Irradiation sterilized bone strengthened and toughened by ribose pre-treatment. J Mech Behav Biomed Mater 44:147–155CrossRefPubMedGoogle Scholar
  62. Zimmermann EA, Barth HD, Ritchie RO (2012) The multiscale origins of fracture resistance in human bone and its biological degradation. JOM 64(4):486–493CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of Engineering and TechnologyInternational Islamic UniversityIslamabadPakistan

Personalised recommendations