Advertisement

Cell and Tissue Banking

, Volume 19, Issue 4, pp 721–726 | Cite as

Stability analysis of the antibiotic cocktail used by Treviso Tissue Bank Foundation for tissues decontamination

  • Giulia Montagner
  • Diletta Trojan
  • Elisa Cogliati
  • Flavio Manea
  • Andrea Vantini
  • Adolfo Paolin
Article
  • 27 Downloads

Abstract

Although careful donor selection reduces tissue contamination, close microbiological control of harvested allografts remains a key task of tissue banks. To guarantee the safety of human tissues for allograft transplantation, a decontamination regimen must be adopted which, as recommended by European guidelines, is active against the majority of microorganisms isolated in tissues. Antibiotic decontamination methods differ from one tissue bank to another in terms of antimicrobial agents, temperature and length of exposure. After identifying the most effective antibiotics against the bacterial strains most commonly isolated in allografts, Treviso Tissue Bank Foundation demonstrated the efficacy of an antibiotic cocktail for tissue decontamination containing Gentamicin, Vancomycin and Meropenem. The aim of this study was to analyse the degradation kinetics of the three antibiotics according to preparation method and use. The results show that only Meropenem is unstable at + 4 °C, while Gentamicin and Vancomycin are valid for over 10 days. We thus established to add Meropenem before the start of the tissue decontamination phase.

Keywords

Antibiotic cocktail Tissues Homografts Decontamination Chemical stability 

Notes

Acknowledgements

We would like to show our warm thank to Dr. Trojan Giovanni who supported us in data evaluation.

References

  1. Barratt-Boyes BG, Roche AH (1969) A review of aortic valve homografts over a six and one-half year period. Ann Surg 170(3):483–492CrossRefPubMedPubMedCentralGoogle Scholar
  2. de By TM, Parker R, Delmo Walter EM, Hetzer R (2012) Cardiovascular tissue banking in Europe. HSR Proc Intensive Care Cardiovasc Anesth 4(4):251–260PubMedPubMedCentralGoogle Scholar
  3. Deijkers RL, Bloem RM, Petit PL, Brand R, Vehmeyer SB, Veen MR (1997) Contamination of bone allografts: analysis of incidence and predisposing factors. J Bone Joint Surg Br 79(1):161–166CrossRefPubMedGoogle Scholar
  4. Eastlund T (2006) Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 7:147–166CrossRefPubMedGoogle Scholar
  5. Fishman JA, Greenwald MA, Grossi PA (2012) Transmission of infection with human allografts: essential considerations in donor screening. Clin Infect Dis 55(5):720–727.  https://doi.org/10.1093/cid/cis519 CrossRefPubMedGoogle Scholar
  6. Germain M, Thibault L, Jacques A, Tremblay J, Bourgeois R (2010) Heart valve allograft decontamination with antibiotics: impact of the temperature of incubation on efficacy. Cell Tissue Bank 11(2):197–204CrossRefPubMedGoogle Scholar
  7. Heng WL, Lim CH, Tan BH, Chlebicki MP, Lee WH, Seck T, Lim YP (2012) From penicillin-streptomycin to amikacin-vancomycin: antibiotic decontamination of cardiovascular homografts in Singapore. PLoS ONE 7(12):e51605CrossRefPubMedPubMedCentralGoogle Scholar
  8. Heng WL, Albrecht H, Chiappini P, Lim YP, Manning L (2013) International heart valve bank survey: a review of processing practices and activity outcomes. J Transplant 2013:163150CrossRefPubMedPubMedCentralGoogle Scholar
  9. Holder IA, Robb E, Kagan R (1999) Antimicrobial mixtures used to store harvested skin: antimicrobial activities tested at refrigerator (4 °C) temperatures. J Burn Care Rehabil 20(6):501–504CrossRefGoogle Scholar
  10. Ireland L, Spelman D (2005) Bacterial contamination of tissue allografts—experiences of the donor tissue bank of Victoria. Cell Tissue Bank 6(3):181–189CrossRefPubMedGoogle Scholar
  11. Jashari R, Tabaku M, Van Hoeck B, Cochéz C, Callant M, Vanderkelen A (2007) Decontamination of heart valve and arterial allografts in the European Homograft Bank (EHB): comparison of two different antibiotic cocktails in low temperature conditions. Cell Tissue Bank 8(4):247–255CrossRefPubMedGoogle Scholar
  12. Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB, Archibald LK (2004) Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med 350(25):2564–2571CrossRefPubMedGoogle Scholar
  13. Mirabet V, Melero A, Ocete MD, Bompou D, Torrecillas M, Carreras JJ, Valero I, Marqués AI, Medina R, Larrea LR, Arbona C, Garrigues TM, Gimeno C (2018) Effect of freezing and storage temperature on stability and antimicrobial activity of an antibiotic mixture used for decontamination of tissue allografts. Cell Tissue Bank.  https://doi.org/10.1007/s10561-018-9693-2 CrossRefPubMedGoogle Scholar
  14. Paolin A, Trojan D, Petit P, Coato P, Rigoli R (2017a) Evaluation of allograft contamination and decontamination at the Treviso Tissue Bank Foundation: a retrospective study of 11,129 tissues. PLoS ONE 12(3):e0173154CrossRefPubMedPubMedCentralGoogle Scholar
  15. Paolin A, Romualdi C, Romagnoli L, Trojan D (2017b) Analysis of potential factors affecting allografts contamination at retrieval. Cell Tissue Bank 18(4):539–545CrossRefPubMedPubMedCentralGoogle Scholar
  16. Paolin A, Spagnol L, Battistella G, Trojan D (2018) Evaluation of allograft decontamination with two different antibiotic cocktails at the Treviso Tissue Bank Foundation. PLoS ONE 13(8):e0201792.  https://doi.org/10.1371/journal.pone.0201792 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Parker R (1997) An international survey of allograft banks. In: Yacoub MH, Yankah AC, Hetzer R (eds) Cardiac valve allograft. Steinkopff, HeidelbergGoogle Scholar
  18. Pitt TL, Tidey K, Roy A, Ancliff S, Lomas R, McDonald CP (2014) Activity of four antimicrobial cocktails for tissue allograft decontamination against bacteria and Candida spp. of known susceptibility at different temperatures. Cell Tissue Bank 15(1):119–125CrossRefPubMedGoogle Scholar
  19. Saegeman V, Ectors N, Lismont D, Verduyckt B, Verhaegen J (2008) Bacteriostasis testing on allograft tissue inoculated in Wilkins-Chalgren broth. J Hosp Infect 70(3):278–283CrossRefPubMedGoogle Scholar
  20. Samara E, Moriarty TF, Decosterd LA, Richards RG, Gautier E, Wahl P (2017) Antibiotic stability over 6 weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Joint Res 6(5):296–306CrossRefPubMedPubMedCentralGoogle Scholar
  21. Schafer TW, Pascale A, Shimonaski G, Came PE (1972) Evaluation of gentamicin for use in virology and tissue culture. Appl Microbiol 23(3):565–570PubMedPubMedCentralGoogle Scholar
  22. Serafini A, Riello E, Trojan D, Cogliati E, Palù G, Manganelli R, Paolin A (2016) Evaluation of new antibiotic cocktails against contaminating bacteria found in allograft tissues. Cell Tissue Bank 17(4):619–628CrossRefPubMedPubMedCentralGoogle Scholar
  23. Strickett MG, Barratt-Boyes BG, MacCulloch D (1983) Disinfection of human heart valve allografts with antibiotics in low concentration. Pathology 15(4):457–462CrossRefPubMedGoogle Scholar
  24. Takeuchi Y, Sunagawa M, Isobe Y, Hamazume Y, Noguchi T (1995) Stability of a 1 beta-methylcarbapenem antibiotic, meropenem (SM-7338) in aqueous solution. Chem Pharm Bull (Tokyo) 43(4):689–692CrossRefGoogle Scholar
  25. Viaene E, Chanteux H, Servais H, Mingeot-Leclercq MP, Tulkens PM (2002) Comparative stability studies of antipseudomonal beta-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemother 46(8):2327–2332CrossRefPubMedPubMedCentralGoogle Scholar
  26. Waterworth PM, Lockey E, Berry EM, Pearce HM (1974) A critical investigation into the antibiotic sterilization of heart valve homografts. Thorax 29(4):432–436CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Treviso Tissue Bank FoundationTrevisoItaly
  2. 2.ARPA Veneto, Laboratory ServiceVeronaItaly

Personalised recommendations