Advertisement

Cell and Tissue Banking

, Volume 19, Issue 4, pp 591–601 | Cite as

In vitro and in vivo evaluation of xenogeneic bone putty with the carrier of hydrogel derived from demineralized bone matrix

  • Naili Zhang
  • Lina Ma
  • Xiaowei Liu
  • Xiaorui Jiang
  • Zhenhai Yu
  • Dongmei Zhao
  • Luping Zhang
  • Chunlei Zhang
  • Fei Huang
Article
  • 62 Downloads

Abstract

The demineralized bone matrix (DBM) putty is a traditional bone graft utilized to facilitate the repair and reconstruction of bone. Recent studies indicated the DBM putties with the various carriers were different in bone repairing ability. In order to prepare a kind of DBM putty with a good biocompatibility and bioactivity, the DBM gel was processed from the DBM and the feasibility as a carrier for the DBM putty was evaluated. After the bovine DBM gel was prepared, the BMPs content as well as the ability to promote osteogenic differentiation of MC3T3-E1 cells in vitro were investigated. Then the DBM putty was prepared and filled into the rat calvarial defect model to evaluate the bone repairing ability by micro-CT and histology. The result showed there was 2.953 ± 0.054 ng BMP contained in per gram of the DBM gel. And the ALP production of MC3T3-E1 cells in the DBM gels group increased with prolonged culturing, the mineralized nodules formed in MC3T3-E1 cells on 14th day after co-culture. The putty prepared by DBM gel was easy to handle without loss of DBM particles at room temperature. In the rat calvarial bone defect experiment, histological observation showed more mature bone formed in the DBM putty group than that in the type I collagen group at 12 weeks, which indicated the bone putty prepared by DBM gel exhibited a better bone repair capability.

Keywords

Demineralized bone matrix Xenograft Bone matrix gel Bone regeneration Moldable putty 

Notes

Acknowledgements

This work was supported by the research funding from Natural Science Foundation of Shandong Province (Nos. BS2015SW021; ZR2014HM009; ZR2016HP13), the Project of Science and Technology of Binzhou Medical University (Nos. BY2014KYQD25; BY2014KJ08), the National Natural Science Foundation of China (No. 81301570), and The development of medical science and technology project of Shandong Province (No. 2013WS0306).

Compliance with ethical standards

Conflict of interest

We declare that we have no conflicts of interest to this work, and have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

References

  1. Acarturk TO, Hollinger JO (2006) Commercially available demineralized bone matrix compositions to regenerate calvarial critical-sized bone defects. Plast Reconstr Surg 118(4):862–873CrossRefPubMedGoogle Scholar
  2. Accorsi-Mendonca T, Conz MB, Barros TC, de Sena LA, Soares Gde A, Granjeiro JM (2008) Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res 22(1):5–10CrossRefPubMedGoogle Scholar
  3. Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C (2006) Nell-1-induced bone regeneration in calvarial defects. Am J Pathol 169(3):903–915CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aghaloo T, Cowan CM, Zhang X, Freymiller E, Soo C, Wu B, Ting K, Zhang Z (2010) The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg 68(2):300–308CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alom N, Peto H, Kirkham GR, Shakesheff KM, White LJ (2018) Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater 106(2):900–908CrossRefPubMedGoogle Scholar
  6. Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB (2010) Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am 92(2):427–435CrossRefPubMedGoogle Scholar
  7. Banjar AA, Mealey BL (2013) A clinical investigation of demineralized bone matrix putty for treatment of periodontal bony defects in humans. Int J Periodontics Restor Dent 33(5):567–573CrossRefGoogle Scholar
  8. Barbieri D, Yuan H, de Groot F, Walsh WR, de Bruijn JD (2011) Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta Biomater 7(5):2007–2014CrossRefPubMedGoogle Scholar
  9. Bodakhe S, Verma S, Garkhal K, Samal SK, Sharma SS, Kumar N (2013) Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: development, biocompatibility and bone regeneration in a rat calvarial bone defect model. Nanomedicine (Lond) 8(11):1777–1795CrossRefGoogle Scholar
  10. Borah B, Dufresne TE, Cockman MD, Gross GJ, Sod EW, Myers WR, Combs KS, Higgins RE, Pierce SA, Stevens ML (2000) Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res 15(9):1786–1797CrossRefPubMedGoogle Scholar
  11. Choi MY, Kim JT, Lee WJ, Lee Y, Park KM, Yang YI, Park KD (2017) Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Acta Biomater 50:234–248CrossRefPubMedGoogle Scholar
  12. Dallari D, Savarino L, Albisinni U, Fornasari P, Ferruzzi A, Baldini N, Giannini S (2012) A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials 33(1):72–79CrossRefPubMedGoogle Scholar
  13. Dozza B, Lesci IG, Duchi S, Della Bella E, Martini L, Salamanna F, Falconi M, Cinotti S, Fini M, Lucarelli E, Donati D (2017) When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential. J Biomed Mater Res A 105(4):1019–1033CrossRefPubMedGoogle Scholar
  14. Gasimli L, Linhardt RJ, Dordick JS (2012) Proteoglycans in stem cells. Biotechnol Appl Biochem 59(2):65–76CrossRefPubMedGoogle Scholar
  15. Gothard D, Smith EL, Kanczler JM, Black CR, Wells JA, Roberts CA, White LJ, Qutachi O, Peto H, Rashidi H, Rojo L, Stevens MM, Haj EI, Rose FRAJ, Shakesheff KM, Oreffo RO (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS ONE 10(12):e0145080CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO (2012) Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 64(12):1063–1077CrossRefPubMedGoogle Scholar
  17. Han B, Tang B, Nimni ME (2003) Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res 44(3–4):160–166CrossRefPubMedGoogle Scholar
  18. Hatzokos I, Stavridis SI, Iosifidou E, Karataglis D, Christodoulou A (2011) Autologous bone marrow grafting combined with demineralized bone matrix improves consolidation of docking site after distraction osteogenesis. J Bone Joint Surg Am 93(7):671–678CrossRefPubMedGoogle Scholar
  19. Hong Y, Huber A, Takanari K, Amoroso NJ, Hashizume R, Badylak SF, Wagner WR (2011) Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 32(13):3387–3394CrossRefPubMedPubMedCentralGoogle Scholar
  20. Horvathy DB, Vacz G, Toro I, Szabo T, May Z, Duarte M, Hornyak I, Szabo BT, Dobo-Nagy C, Doros A, Lacza Z (2016) Remineralization of demineralized bone matrix in critical size cranial defects in rats: a 6-month follow-up study. J Biomed Mater Res B Appl Biomater 104(7):1336–1342CrossRefPubMedGoogle Scholar
  21. Inoda H, Yamamoto G, Hattori T (2004) Histological investigation of osteoinductive properties of rh-BMP2 in a rat calvarial bone defect model. J Craniomaxillofac Surg 32(6):365–369CrossRefPubMedGoogle Scholar
  22. Irinakis T (2011) Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J Oral Maxillofac Surg 69(1):134–141CrossRefPubMedGoogle Scholar
  23. Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB, Archibald LK (2004) Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med 350(25):2564–2571CrossRefPubMedGoogle Scholar
  24. Kim DM, Nevins M, Camelo M, Schupbach P, Kim SW, Camelo JM, Al Hezaimi K, Nevins ML (2011) The feasibility of demineralized bone matrix and cancellous bone chips in conjunction with an extracellular matrix membrane for alveolar ridge preservation: a case series. Int J Periodontics Restor Dent 31(1):39–47Google Scholar
  25. Kisiel M, Klar AS, Ventura M, Buijs J, Mafina MK, Cool SM, Hilborn J (2013) Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation. PLoS ONE 8(10):e78551CrossRefPubMedPubMedCentralGoogle Scholar
  26. Long B, Dan L, Jian L, Yunyu H, Shu H, Zhi Y (2012) Evaluation of a novel reconstituted bone xenograft using processed bovine cancellous bone in combination with purified bovine bone morphogenetic protein. Xenotransplantation 19(2):122–132CrossRefPubMedGoogle Scholar
  27. Martinez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP (2011) Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. J Control Release 152(2):232–240CrossRefPubMedGoogle Scholar
  28. Meyer S, Floerkemeier T, Windhagen H (2008) Histological osseointegration of tutobone: first results in human. Arch Orthop Trauma Surg 128(6):539–544CrossRefPubMedGoogle Scholar
  29. Minardi S, Corradetti B, Taraballi F, Sandri M, Van Eps J, Cabrera FJ, Weiner BK, Tampieri A, Tasciotti E (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137CrossRefPubMedGoogle Scholar
  30. Murray T, Morscher MA, Krahe AM, Adamczyk MJ, Weiner DS (2016) Fibular allograft and demineralized bone matrix for the treatment of slipped capital femoral epiphysis. Orthopedics 39(3):e519–e525CrossRefPubMedGoogle Scholar
  31. O’leary RK, Prewett AB (1993) Osteogenic composition and implant containing same. United States, Patent and Trademark OfficeGoogle Scholar
  32. O’leary RK, Prewett AB (1995) Osteogenic composition and implant containing same. United States, Patent and Trademark OfficeGoogle Scholar
  33. Peker E, Karaca IR, Yildirim B (2016) Experimental evaluation of the effectiveness of demineralized bone matrix and collagenated heterologous bone grafts used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation. Int J Oral Maxillofac Implants 31(2):e24–e31CrossRefPubMedGoogle Scholar
  34. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86-A(10):2243–2250CrossRefPubMedGoogle Scholar
  35. Pietrzak WS, Dow M, Gomez J, Soulvie M, Tsiagalis G (2012) The in vitro elution of BMP-7 from demineralized bone matrix. Cell Tissue Bank 13(4):653–661CrossRefPubMedGoogle Scholar
  36. Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, Rose FR, Badylak SF, Shakesheff KM, White LJ (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9(8):7865–7873CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schallenberger MA, Rossmeier K, Lovick HM, Meyer TR, Aberman HM, Juda GA (2014) Comparison of the osteogenic potential of OsteoSelect demineralized bone matrix putty to NovaBone calcium-phosphosilicate synthetic putty in a cranial defect model. J Craniofac Surg 25(2):657–661CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schwartz Z, Hyzy SL, Moore MA, Hunter SA, Ronholdt CJ, Sunwoo M, Boyan BD (2011) Osteoinductivity of demineralized bone matrix is independent of donor bisphosphonate use. J Bone Joint Surg Am 93(24):2278–2286CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tavakol S, Khoshzaban A, Azami M, Kashani IR, Tavakol H, Yazdanifar M, Sorkhabadi SM (2013) The effect of carrier type on bone regeneration of demineralized bone matrix in vivo. J Craniofac Surg 24(6):2135–2140CrossRefPubMedGoogle Scholar
  40. Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899CrossRefPubMedGoogle Scholar
  41. Urist MR, Mikulski AJ (1979) A soluble bone morphogenetic protein extracted from bone matrix with a mixed aqueous and nonaqueous solvent. Proc Soc Exp Biol Med 162(1):48–53CrossRefPubMedGoogle Scholar
  42. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(6):1392–1406CrossRefPubMedGoogle Scholar
  43. Yi H, Ur Rehman F, Zhao C, Liu B, He N (2016) Recent advances in nano scaffolds for bone repair. Bone Res 13(4):16050CrossRefGoogle Scholar
  44. Zhang N, Zhou M, Zhang Y, Wang X, Ma S, Dong L, Yang T, Ma L, Li B (2014) Porcine bone grafts defatted by lipase: efficacy of defatting and assessment of cytocompatibility. Cell Tissue Bank 15(3):357–367CrossRefPubMedGoogle Scholar
  45. Zhang Y, Wang J, Ma Y, Niu X, Liu J, Gao L, Zhai X, Chu K, Han B, Yang L, Wang J (2017) Preparation and biocompatibility of demineralized bone matrix/sodium alginate putty. Cell Tissue Bank 18:205–216CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Naili Zhang
    • 1
  • Lina Ma
    • 2
  • Xiaowei Liu
    • 1
  • Xiaorui Jiang
    • 3
  • Zhenhai Yu
    • 1
  • Dongmei Zhao
    • 1
  • Luping Zhang
    • 1
  • Chunlei Zhang
    • 1
  • Fei Huang
    • 1
  1. 1.Department of Human Anatomy, School of Basic Medical ScienceBinzhou Medical UniversityYantaiChina
  2. 2.Department of Diagnostics, School of MedicineBinzhou Medical UniversityYantaiChina
  3. 3.Department of Hand and Foot SurgeryYuhuangding HospitalYantaiChina

Personalised recommendations