Advertisement

Cell and Tissue Banking

, Volume 19, Issue 4, pp 507–517 | Cite as

The addition of albumin improves Schwann cells viability in nerve cryopreservation

  • Sara Alicia González Porto
  • Nieves Domenech
  • Alba González Rodríguez
  • Edgar Mauricio Avellaneda Oviedo
  • Francisco J. Blanco
  • María C. Arufe Gonda
  • Ángel Álvarez Jorge
  • Jacinto Sánchez Ibañez
  • Esther Rendal Vázquez
Article
  • 53 Downloads

Abstract

The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4′,6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.

Keywords

Cryopreservation Dimethyl sulfoxide Peripheral nerve injuries Serum albumin 

Notes

Acknowledgements

We would like to thank Alberto Centeno for his assistance and commitment in the excellent care taken of the animals, Catalina Sueiro and Ada Castro for their major support in the assessment of the electronic microscopy images, and Jorge Pombo Otero and Ana Reguero for their invaluable assistance in the interpretation of the histological images.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Arav A, Friedman O, Natan Y, Gur E, Shani N (2017) Rat hindlimb cryopreservation and transplantation: a step toward « organ banking». Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 17(11):2820–2828CrossRefGoogle Scholar
  2. Arnaud F (1992) Future in cryopreservation. Int J Artif Organs 15(11):637–640CrossRefGoogle Scholar
  3. Bakhach J, Casoli V, Guimberteau J-C (2007) The cryopreservation of composite tissues: principle, literature review and preliminary results of our own experiments. Ann Chir Plast Esthét 52(5):531–547CrossRefGoogle Scholar
  4. Borderie VM, Lopez M, Lombet A, Carvajal-Gonzalez S, Cywiner C, Laroche L (1998) Cryopreservation and culture of human corneal keratocytes. Investig Ophthalmol Vis Sci 39(8):1511–1519Google Scholar
  5. Cui X, Gao DY, Fink BF, Vasconez HC, Rinker B (2007) Cryopreservation of composite tissues and transplantation: preliminary studies. Cryobiology 55(3):295–304CrossRefGoogle Scholar
  6. Decherchi P, Lammari-Barreault N, Cochard P, Carin M, Réga P, Pio J et al (1997) CNS axonal regeneration with peripheral nerve grafts cryopreserved by vitrification: cytological and functional aspects. Cryobiology 34(3):214–239CrossRefGoogle Scholar
  7. Delbosc B, Herve P, Carbillet JP, Montard M (1984) Corneal cryopreservation in man: a proposal for an original technic. J Fr Ophtalmol 7(4):321–331Google Scholar
  8. Díaz Rodríguez R, Van Hoeck B, De Gelas S, Blancke F, Ngakam R, Bogaerts K et al (2017) Determination of residual dimethylsulfoxide in cryopreserved cardiovascular allografts. Cell Tissue Bank 18(2):263–270CrossRefGoogle Scholar
  9. Dubernard J-M, Devauchelle B (2008) Face transplantation. Lancet 372(9639):603–604CrossRefGoogle Scholar
  10. Evans PJ, Mackinnon SE, Best TJ, Wade JA, Awerbuck DC, Makino AP et al (1995) Regeneration across preserved peripheral nerve grafts. Muscle Nerve 18(10):1128–1138CrossRefGoogle Scholar
  11. Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y et al (1998) Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 21(11):1507–1522CrossRefGoogle Scholar
  12. Fairbairn NG, Ng-Glazier J, Meppelink AM, Randolph MA, Valerio IL, Fleming ME et al (2016) Light-activated sealing of acellular nerve allografts following nerve gap injury. J Reconstr Microsurg 32(6):421–430CrossRefGoogle Scholar
  13. Fansa H, Lassner F, Kook PH, Keilhoff G, Schneider W (2000) Cryopreservation of peripheral nerve grafts. Muscle Nerve 23(8):1227–1233CrossRefGoogle Scholar
  14. Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM et al (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35(6):530–542CrossRefGoogle Scholar
  15. Grogan SP, Aklin B, Frenz M, Brunner T, Schaffner T, Mainil-Varlet P (2002) In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198(1):5–13CrossRefGoogle Scholar
  16. Gurina TM, Pakhomov AV, Polyakova AL, Legach EI, Bozhok GA (2016) The development of the cell cryopreservation protocol with controlled rate thawing. Cell Tissue Bank 17(2):303–316CrossRefGoogle Scholar
  17. Hirasé Y, Kojima T, Uchida M, Takeishi M (1992) Cryopreserved allogeneic vessel and nerve grafts: hind-limb replantation model in the rat. J Reconstr Microsurg 8(6):437–443 discussion 445–446 CrossRefGoogle Scholar
  18. Jensen S, Wallace MN, Dahlerup B (1990) Cryopreservation of rat peripheral nerve segments later used for transplantation. Neuroreport 1(3–4):243–246CrossRefGoogle Scholar
  19. Jung H, Kim N, Yoon M (2016) Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells. Anim Reprod Sci 173:24–28CrossRefGoogle Scholar
  20. Kiroshka V, Trutaieva I, Bondarenko T (2017) Efficiency of mannitol-supplemented medium during adding/removing ovarian tissue with penetrating cryoprotective agents. Cell Tissue Bank 19(1):123–132CrossRefGoogle Scholar
  21. Krausz MM, Ashkenazi I, Alfici R (2017) Parathyroid autotransplantation in adults and children. Harefuah 156(3):167–170Google Scholar
  22. Lassner F, Becker M, Fansa H, Walter GF, Berger A (1995) Preservation of peripheral nerve grafts: a comparison of normal saline, HTK organ preservation solution, and DMEM Schwann cell culture medium. J Reconstr Microsurg 11(6):447–453CrossRefGoogle Scholar
  23. Li H, Cao H, Guo X, Wang H (2017) Cryovial monolayer vitrification for ovarian tissue cryopreservation. Cell Tissue Bank 19(1):149–154CrossRefGoogle Scholar
  24. Lisy M, Kalender G, Schenke-Layland K, Brockbank KGM, Biermann A, Stock UA (2017) Allograft heart valves: current aspects and future applications. Biopreserv Biobank 15(2):148–157CrossRefGoogle Scholar
  25. Ma Y-S, Weng S-W, Lin M-W, Lu C-C, Chiang J-H, Yang J-S et al (2012) Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 50(5):1271–1278CrossRefGoogle Scholar
  26. Mackinnon SE (1989) New directions in peripheral nerve surgery. Ann Plast Surg 22(3):257–273CrossRefGoogle Scholar
  27. Martinez-Madrid B, Dolmans M-M, Langendonckt AV, Defrère S, Van Eyck A-S, Donnez J (2004) Ficoll density gradient method for recovery of isolated human ovarian primordial follicles. Fertil Steril 82(6):1648–1653CrossRefGoogle Scholar
  28. Nakamura Y, Obata R, Okuyama N, Aono N, Hashimoto T, Kyono K (2017) Residual ethylene glycol and dimethyl sulphoxide concentration in human ovarian tissue during warming/thawing steps following cryopreservation. Reprod Biomed Online 35(3):311–313CrossRefGoogle Scholar
  29. Pianigiani E, Tognetti L, Ierardi F, Mariotti G, Rubegni P, Cevenini G et al (2016) Assessment of cryopreserved donor skin viability: the experience of the regional tissue bank of Siena. Cell Tissue Bank 17(2):241–253CrossRefGoogle Scholar
  30. Rendal Vázquez ME, Rodríguez Cabarcos M, Fernández Mallo RO, Sánchez Ibáñez J, Segura Iglesias R, Bermúdez González T et al (2004) Functional assessment of human femoral arteries after cryopreservation. Cryobiology 49(1):83–89CrossRefGoogle Scholar
  31. Routledge C, Armitage WJ (2003) Cryopreservation of cornea: a low cooling rate improves functional survival of endothelium after freezing and thawing. Cryobiology 46(3):277–283CrossRefGoogle Scholar
  32. Ruwe PA, Trumble TE (1990) A functional evaluation of cryopreserved peripheral nerve autografts. J Reconstr Microsurg 6(3):239–244CrossRefGoogle Scholar
  33. Schneider M, Stamm C, Brockbank KGM, Stock UA, Seifert M (2017) The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci Rep 7(1):17027CrossRefGoogle Scholar
  34. Shabani Nashtaei M, Nekoonam S, Naji M, Bakhshalizadeh S, Amidi F (2017) Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5′ AMP-activated protein kinase activation. Cell Tissue Bank 19(1):87–95CrossRefGoogle Scholar
  35. Sriuttha W, Uttamo N, Kongkaew A, Settakorn J, Rattanasalee S, Kongtawelert P et al (2016) Ex vivo and in vivo characterization of cold preserved cartilage for cell transplantation. Cell Tissue Bank 17(4):721–734CrossRefGoogle Scholar
  36. Trumble TE, Whalen JT (1992) The effects of cryosurgery and cryoprotectants on peripheral nerve function. J Reconstr Microsurg 8(1):53–58 discussion 59–60 CrossRefGoogle Scholar
  37. Yang I-H, Shin J-A, Lee K-E, Kim J, Cho N-P, Cho S-D (2017) Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2AX. Eur J Oral Sci 125(6):438–443CrossRefGoogle Scholar
  38. Zalewski AA, Fahy GM, Azzam NA, Azzam RN (1993) The fate of cryopreserved nerve isografts and allografts in normal and immunosuppressed rats. J Comp Neurol 331(1):134–147CrossRefGoogle Scholar
  39. Zhang F, Attkiss KJ, Walker M, Buncke HJ (1998) Effect of cryopreservation on survival of composite tissue grafts. J Reconstr Microsurg 14(8):559–564CrossRefGoogle Scholar
  40. Zhu Z, Qiao L, Zhao Y, Zhang S (2014a) Optimal freezing and thawing for the survival of peripheral nerves in severed rabbit limbs. Int J Clin Exp Pathol 7(11):7801–7805Google Scholar
  41. Zhu Z, Qiao L, Zhao Y, Zhang S (2014b) Optimal freezing and thawing for the survival of peripheral nerves in severed rabbit limbs. Int J Clin Exp Pathol 7(11):7801–7805Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sara Alicia González Porto
    • 1
  • Nieves Domenech
    • 2
    • 3
  • Alba González Rodríguez
    • 1
  • Edgar Mauricio Avellaneda Oviedo
    • 1
  • Francisco J. Blanco
    • 4
  • María C. Arufe Gonda
    • 5
  • Ángel Álvarez Jorge
    • 1
  • Jacinto Sánchez Ibañez
    • 6
  • Esther Rendal Vázquez
    • 6
  1. 1.Servicio de Cirugía Plástica, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS)Hospital Universitario de A CoruñaA CoruñaSpain
  2. 2.Biobanco A Coruña- Instituto de Investigación Biomédica de A Coruña (INIBIC)A CoruñaSpain
  3. 3.Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
  4. 4.Grupo de Investigación de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS)Universidade da Coruña (UDC)A CoruñaSpain
  5. 5.Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER BBN/ISCIII, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Ciencias Biomédicas, Medicina y Fisioterapia, Facultade de OzaUniversidade da Coruña (UDC)A CoruñaSpain
  6. 6.Unidad de Criobiología, Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC)Servicio Galego de Saúde (SERGAS)A CoruñaSpain

Personalised recommendations