Advertisement

Study of tensiometric properties, microbiological and collagen content in nile tilapia skin submitted to different sterilization methods

  • Ana Paula Negreiros Nunes Alves
  • Edmar Maciel Lima Júnior
  • Nelson Sarto Piccolo
  • Marcelo José Borges de Miranda
  • Maria Elisa Quezado Lima Verde
  • Antônio Ernando Carlos Ferreira Júnior
  • Paulo Goberlânio de Barros Silva
  • Victor Pinheiro Feitosa
  • Tereza Jesus Pinheiro Gomes de Bandeira
  • Monica Beatriz Mathor
  • Manoel Odorico de Moraes
Full Length Paper

Abstract

Tissue bioengineering development is a global concern and different materials are studied and created to be safe, effective and with low cost. Nile Tilapia skin had shown its biological potential as covers for the burn wound. This study evaluates the tilapia skin histological, collagen properties and tensiometric resistance, after treatment by different sterilization methods. Tilapia skin samples were submitted to two sterilization processes: (1) chemical, which consisted in two 2% chlorhexidin baths, followed by sequential baths in increasing glycerol concentrations; and (2) radiation, when glycerolized skin samples were submitted to gamma radiation at 25, 30 and 50 kGy. Microscopic analyzes were performed through Haematoxylin–eosin and Picrosirius Red under polarized light. For tensiometric analysis, traction tests were performed. Glycerol treated skin presented a discrete collagen fibers disorganization within the deep dermis, while irradiated skin did not show any additional change. Throughout the steps of chemical sterilization, there was a higher proportion of collagen with red/yellow birefringence (type I) in the skin samples up to the first bath in chlorhexidin, when compared to samples after the first two glycerol baths (P < 0.005). However, there was no difference in relation to total collagen between groups. In irradiated skin, there was a larger total collagen preservation when using until 30 kGy (P < 0.005). Tensiometric evaluation did not show significant differences in relation to maximum load in the groups studied. We concluded that chemical and radiation (25 and 30 kGy) are efficient methods to sterilize Nile Tilapia skin without altering its microscopic or tensiometric characteristics.

Keywords

Nile tilapia Tissue engineering Gamma radiation Chorhexidine 

References

  1. Acar A, Uygur F, Diktaş H et al (2011) Comparison of silver-coated dressing (Acticoat®), chlorhexidine acetate 0.5% (Bactigrass®) and nystatin for topical antifungal effect in Candida albicans-contaminated, full-skin-thickness rat burn wounds. Burns 37(5):881–884.  https://doi.org/10.1016/j.burns.2011.01.024 CrossRefGoogle Scholar
  2. Alomar ZA, Gawri R, Roughley PJ, Haglund L, Burman M (2012) The effects of chlorhexidine graft decontamination on tendon graft. Am J Sports Med 40(7):1646–1653.  https://doi.org/10.1177/0363546512443808 CrossRefPubMedGoogle Scholar
  3. Baker TF, Ronholdt CJ, Bogdansky S (2005) Validating a low dose gamma irradiation process for sterilizing allografts using ISO 11137 Method 2B. Cell Tissue Bank 6(4):271–275.  https://doi.org/10.1007/s10561-005-7364-6 CrossRefPubMedGoogle Scholar
  4. Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing - a review. J Pharm Sci 104(11):3653–3680.  https://doi.org/10.1002/jps.24610 CrossRefPubMedGoogle Scholar
  5. Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL (2014) Bone embrittlement and collagen modi fi cations due to high-dose gamma-irradiation sterilization. Bone 61:71–81.  https://doi.org/10.1016/j.bone.2014.01.006 CrossRefPubMedGoogle Scholar
  6. Chiu T, Burd A (2005) “Xenograft” dressing in the treatment of burns. Clin Dermatol 23(4):419–423.  https://doi.org/10.1016/j.clindermatol.2004.07.027 CrossRefPubMedGoogle Scholar
  7. Conrad BP, Rappé M, Horodyski M, Farmer KW, Indelicato PA (2013) The effect of sterilization on mechanical properties of soft tissue allografts. Cell Tissue Bank 14(3):359–366.  https://doi.org/10.1007/s10561-012-9340-2 CrossRefPubMedGoogle Scholar
  8. Delgado LM, Pandit A, Zeugolis DI (2014) Influence of sterilisation methods on collagen-based devices stability and properties. Expert Rev Med Devices 11(3):305–314.  https://doi.org/10.1586/17434440.2014.900436 CrossRefPubMedGoogle Scholar
  9. Endres S, Kratz M (2009) Gamma irradiation. An effective procedure for bone banks, but does it make sense from an osteobiological perspective? J Musculoskelet Neuronal Interact 9(1):25–31PubMedGoogle Scholar
  10. Franco MLRS, Franco NP, Gasparino E, Dorado DM, Prado M, Vesco APD (2013) Comparação das peles de tilápia do Nilo, PACU e Tambaqui: histologia, composição e resistência. Arch Zootec 62(237):21–32CrossRefGoogle Scholar
  11. Guo Z-Q, Qiu L, Gao Y et al (2016) Use of porcine acellular dermal matrix following early dermabrasion reduces length of stay in extensive deep dermal burns. Burns.  https://doi.org/10.1016/j.burns.2015.10.018 Google Scholar
  12. Inoue Y, Hasegawa M, Maekawa T et al (2016) The wound/burn guidelines–1: wounds in general. J Dermatol.  https://doi.org/10.1111/1346-8138.13276 Google Scholar
  13. Kattz J (2010) The effects of various cleaning and sterilization processes on allograft bone incorporation. J Long Term Eff Med Implants. 20(4):271–276. http://www.ncbi.nlm.nih.gov/pubmed/21488820. Accessed 18 Feb 2017
  14. Kesting MR, Wolff K-D, Hohlweg-Majert B, Steinstraesser L (2008) The role of allogenic amniotic membrane in burn treatment. J Burn Care Res 29(6):907–916.  https://doi.org/10.1097/BCR.0b013e31818b9e40 CrossRefPubMedGoogle Scholar
  15. Lineen E, Namias N (2008) Biologic dressing in burns. J Craniofac Surg 19(4):923–928.  https://doi.org/10.1097/SCS.0b013e318175b5ab CrossRefPubMedGoogle Scholar
  16. Mann-Salinas EA, Joyner DD, Guymon CH et al (2015) Comparison of Decontamination Methods for Human Skin Grafts. J Burn Care Res 36(6):636–640.  https://doi.org/10.1097/BCR.0000000000000188 CrossRefPubMedGoogle Scholar
  17. Maral T, Borman H, Arslan H, Demirhan B (1999) Efectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns 25(7):625–635CrossRefPubMedGoogle Scholar
  18. Mathangi Ramakrishnan K, Babu M, Mathivanan Jayaraman V, Shankar J (2013) Advantages of collagen based biological dressings in the management of superficial and superficial partial thickness burns in children. Ann Burns Fire Disasters 26(2):98–104PubMedPubMedCentralGoogle Scholar
  19. Nguyen H, Cassady AI, Bennett MB et al (2013) Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts. Bone 57(1):194–200.  https://doi.org/10.1016/j.bone.2013.07.036 CrossRefPubMedGoogle Scholar
  20. Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC (2016) Infection in Burns. Surg Infect (Larchmt) 17(2):250–255.  https://doi.org/10.1089/sur.2013.134 CrossRefGoogle Scholar
  21. Nunes Alves APN, Lima Verde MEQ, Ferreira Júnior AEC et al (2015) Avaliação microscópica, estudo histoquímico e análise de propriedades tensiométricas da pele de tilápia do Nilo. Rev Bras Queimaduras 14(3):203–210Google Scholar
  22. Paggiaro AO, Mathor MB, de Carvalho VF (2010) Estabelecimento de protocolo de glicerolização de membranas amnióticas para uso como curativo biológico. Rev Bras Queimaduras 9(4):2–6Google Scholar
  23. Ravishanker R, Bath AS, Roy R (2003) “Amnion Bank”–The use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns 29(4):369–374.  https://doi.org/10.1016/S0305-4179(02)00304-2 CrossRefPubMedGoogle Scholar
  24. Shah NB, Wolkers WF et al (2009) Fourier transform infrared spectroscopy investigation of native tissue matrix modifications using a gamma irradiation process. Tissue Eng Part C Methods 15(1):33–40.  https://doi.org/10.1089/ten.tec.2008.0158 CrossRefPubMedGoogle Scholar
  25. Singh R, Singh D, Singh A (2016) Radiation sterelization of tissue allografts: a review. World J Radiol 8(4):355–370.  https://doi.org/10.4329/wjr.v8.i4.355 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ülkür E, Öncül O, Karagöz H, Çeliköz B, Çavuslu S (2005) Comparison of silver-coated dressing (acticoat), chlorhexidine acetate 0.5% (bactigrass), and silver sulfadiazine 1% (silverdin) for topical antibacterial effect in pseudomonas aeruginosa-contaminated, full-skin thickness burn wounds in rats. J Burn Care Rehabil 26(5):430–433.  https://doi.org/10.1097/01.bcr.0000176879.27535.09 CrossRefPubMedGoogle Scholar
  27. von Versen-Hoeynck F, Per A, Becker J (2008) Sterilization and preservation influence the biophysical properties of human amnion grafts. Biologicals 36(4):248–255.  https://doi.org/10.1016/j.biologicals.2008.02.001 CrossRefGoogle Scholar
  28. Wasiak J, Cleland H, Campbell F (2008) Dressings for treating superficial and partial thickness burns. Cochrane Database Syst Rev 8(4):CD002106.  https://doi.org/10.1002/14651858.CD002106.pub3 Google Scholar
  29. Zidan SM, Eleowa SA (2014) Banking and use of glycerol preserved full-thickness skin allograft harvested from body contouring procedures. Burns 40(4):641–647.  https://doi.org/10.1016/j.burns.2013.08.039 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ana Paula Negreiros Nunes Alves
    • 1
    • 6
  • Edmar Maciel Lima Júnior
    • 2
  • Nelson Sarto Piccolo
    • 3
  • Marcelo José Borges de Miranda
    • 4
  • Maria Elisa Quezado Lima Verde
    • 1
  • Antônio Ernando Carlos Ferreira Júnior
    • 1
  • Paulo Goberlânio de Barros Silva
    • 1
  • Victor Pinheiro Feitosa
    • 1
  • Tereza Jesus Pinheiro Gomes de Bandeira
    • 5
  • Monica Beatriz Mathor
    • 6
  • Manoel Odorico de Moraes
    • 7
  1. 1.Nursing, Dentistry and Pharmacy School of the Federal University of CearaFortalezaBrazil
  2. 2.Institute of Burning SupportFortalezaBrazil
  3. 3.First Aid Station for Burning of GoiâniaGoiâniaBrazil
  4. 4.Hospital São Marcos/Rede DorRecifeBrazil
  5. 5.Microbiologist of Postgraduate Program in Medical Microbiology - Federal University of CearaFortalezaBrazil
  6. 6.Pharmaceutical Biochemistry of the Nuclear and Energy Research Institute of University of São Paulo (IPEN)São PauloBrazil
  7. 7.Drug Research and Development Center- NPDM/FortalezaCearáBrazil

Personalised recommendations