Advertisement

Cell and Tissue Banking

, Volume 17, Issue 3, pp 481–489 | Cite as

Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies

  • Y. Melgarejo-Ramírez
  • R. Sánchez-Sánchez
  • J. García-López
  • A. M. Brena-Molina
  • C. Gutiérrez-Gómez
  • C. Ibarra
  • C. Velasquillo
Article

Abstract

The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

Keywords

Elastic cartilage Microtia Auricular remnant Tissue engineering Auricular reconstruction 

Notes

Acknowledgments

The authors thank to IB Karina Martinez for her technical assistance. This work was supported by Grants CONACYT Sectoriales 114359 and Sectoriales 78798, from Consejo Nacional de Ciencia y Tecnologia, Mexico.

References

  1. Bradamante Z, Kostovic-Knezevic L, Levak-Svajger B, Svajger A (1991) Differentiation of the secondary elastic cartilage in the external ear of the rat. Int J Dev Biol 35(3):311–320Google Scholar
  2. Cole AG (2011) A review of diversity in the evolution and development of cartilage: the search for the origin of the chondrocyte. Eur Cell Mater 21:122–129PubMedGoogle Scholar
  3. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200CrossRefPubMedPubMedCentralGoogle Scholar
  4. Kamil SH, Vacanti MP, Vacanti CA, Eavey RD (2004) Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 114(12):2187–2190CrossRefPubMedGoogle Scholar
  5. Langer R (2000) Tissue engineering. Mol Ther 1(1):12–15CrossRefPubMedGoogle Scholar
  6. Luquetti DV, Heike CL, Hing AV, Cunningham ML, Cox TC (2012) Microtia: epidemiology and genetics. Am J Med Genet A 158A(1):124–139CrossRefPubMedGoogle Scholar
  7. Nabzdyk C, Pradhan L, Molina J, Perin E, Paniagua D, Rosenstrauch D (2009) Review: auricular chondrocytes—from benchwork to clinical applications. In Vivo 23(3):369–380PubMedGoogle Scholar
  8. Naumann A, Dennis JE, Awadallah A, Carrino DA, Mansour JM, Kastenbauer E, Caplan AI (2002) Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 50(8):1049–1058CrossRefPubMedGoogle Scholar
  9. Quatela VC, Sherris DA, Rosier RN (1993) The human auricular chondrocyte. Responses to growth factors. Arch Otolaryngol Head Neck Surg 119(1):32–37CrossRefPubMedGoogle Scholar
  10. Ruszymah BH, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, Isa MR, Fuzina NH, Aminuddin BS (2007) Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage. Int J Pediatr Otorhinolaryngol 71(8):1225–1234CrossRefPubMedGoogle Scholar
  11. Sabbagh W (2011) Early experience in microtia reconstruction: the first 100 cases. J Plast Reconstr Aesthet Surg 64(4):452–458CrossRefPubMedGoogle Scholar
  12. Shieh SJ, Vacanti JP (2005) State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery 137(1):1–7CrossRefPubMedGoogle Scholar
  13. Umlauf D, Frank S, Pap T, Bertrand J (2010) Cartilage biology, pathology, and repair. Cell Mol Life Sci 67(24):4197–4211CrossRefPubMedGoogle Scholar
  14. Zhang G, Eames BF, Cohn MJ (2009) Chapter 2. Evolution of vertebrate cartilage development. Curr Top Dev Biol 86:15–42CrossRefPubMedGoogle Scholar
  15. Zhang L, Li Q, Liu Y, Zhou G, Liu W, Cao Y (2011) Human ear cartilage, tissue engineering for tissue and organ regeneration. In: Eberli D (ed). ISBN: 978-953-307-688-1Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Y. Melgarejo-Ramírez
    • 1
  • R. Sánchez-Sánchez
    • 1
  • J. García-López
    • 2
  • A. M. Brena-Molina
    • 1
  • C. Gutiérrez-Gómez
    • 3
  • C. Ibarra
    • 2
  • C. Velasquillo
    • 1
  1. 1.Laboratorio de Biotecnología, Centro Nacional de Investigación y Atención de Quemados (CENIAQ)Instituto Nacional de RehabilitaciónMexico CityMexico
  2. 2.Unidad de Ingeniería de tejidos, terapia celular y medicina regenerativaInstituto Nacional de RehabilitaciónMexico CityMexico
  3. 3.División de cirugía plástica y reconstructivaHospital General Dr. Manuel Gea GonzálezMexico CityMexico

Personalised recommendations