Skip to main content
Log in

Iranian homograft heart valves: assessment of durability and late outcome

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Durability and the rate of complications of homograft heart valves, adjusted for patient-related contributors and surgical techniques, rely mainly on the quality of allografts which in turn are mirrored in the donor characteristics and most importantly recovery and processing procedures. Aimed to assess the quality, a study was conducted to figure out the durability and late outcome following homograft replacement with valved conduits procured by the Iranian Tissue Bank. Retrospectively, the pre-implantation, perioperative and follow-up data of 400 non-consecutive recipients of cryopreserved heart valves (222 pulmonary and 178 aortic) from 2006 to 2015 were collected and analyzed in terms of variables reflecting late outcome including adverse events and durability. In the context of durability, the event of interest was defined as the need for homograft replacement and homograft-related death. The mean follow-up time (SD) of study entrants (male/female ratio, 1.4) was 49.8 (36.3) months. Median age at the time of implantation was 11 years. Total 10-years mortality was 21 % (84/400), including 66.7 % early (30-days mortality: 56/84) and 33.3 % late (28/84). Overall late complication rate was 2 %. Median survival time was 120 months (95 % CI 83.3–156.6). The pulmonary valves appeared to be more durable (P value <0.001) and survival probabilities in small sized grafts were lower (P value 0.008). One-, five-, and ten-year graft survival was 82, 76 and 73 %, respectively. The evidences suggest that the homografts function satisfactory with low rate of late complications; nevertheless, more emphasis should be given to make long-term durability comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baltivala SP, Emani S, Mayer JE et al (2012) Pulmonary valve replacement function in adolescents: a comparison of bioprosthetic valves and homograft conduits. Ann Thorac Surg 93:2007–2016

    Article  Google Scholar 

  • Bando K, Danielson GK, Schaff HV et al (1995) Outcome of pulmonary and aortic homografts for right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg 109(3):509–517

    Article  CAS  PubMed  Google Scholar 

  • Barron DJ, Khan NE, Jones TJ et al (2009) What tissue bankers should know about the use of allograft heart valves. Cell Tissue Bank. doi:10.1007/s10561-009-9132-5

    PubMed  Google Scholar 

  • Boethig D, Thies WR, Hecker H et al (2005) Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras. Eur J Cardiothorac Surg 27:58–66

    Article  PubMed  Google Scholar 

  • Brancaccio G, Polito A, Hoxha S et al (2014) The Ross procedure in patients aged less than 18 years: the midterm results. J Thorac Cardiovasc Surg 147(1):383–388

    Article  PubMed  Google Scholar 

  • Brose S, Autschbach R, Rauch T et al (2001) Patient-adapted valve selection: biological vs. mechanical heart valve replacement in aortic valve diseases. Z Kardiol Suppl 6:48–57

    Article  Google Scholar 

  • Buber J, Assenza GE, Huang A et al (2014) Durability of large diameter right ventricular outflow tract conduits in adults with congenital heart disease. Int J Cardiol 175(3):455–463

    Article  PubMed  Google Scholar 

  • Chambers J (2014) Prosthetic heart valves. Int J Clin Pract 68(10):1227–1230

    Article  CAS  PubMed  Google Scholar 

  • Charitos EI, Takkenberg JJM, Hanke T et al (2012) Reoperations on the pulmonary autograft and pulmonary homograft after the Ross procedure: an update on the German Dutch Ross Registry. J Thorac Cardiovasc Surg 144(4):813–823

    Article  PubMed  Google Scholar 

  • Chiappini B, Absil B, Rubay J et al (2007) The Ross procedure: clinical and echocardiographic follow-up in 219 consecutive patients. Ann Thorac Surg 83:1285–1289

    Article  PubMed  Google Scholar 

  • Ciubotaru A, Cebotari S, Tudorache I et al (2013) Biological heart valves. Biomed Tech 58(5):389–397

    Article  Google Scholar 

  • David TE, David C, Woo A et al (2014) The Ross procedure: outcomes at 20 years. J Thorac Cardiovasc Surg 147(1):85–94

    Article  PubMed  Google Scholar 

  • Delahaye F, Chu VH, Altclas J et al (2015) One-year outcome following biological or mechanical valve replacement for infective endocarditis. Int J Cardiol 178:117–123

    Article  CAS  PubMed  Google Scholar 

  • Delmo Walter EM, de By TM, Meyer R et al (2012) The future of heart valve banking and homografts: perspective from the Deutsches Herzzentrum Berlin. HSR Proc Intensiv Care Cardiovasc Anesth 4(2):97–108

    CAS  Google Scholar 

  • Elkins RC, Lane MM, Mc Cue C et al (2001) Ross operation in children: late results. J Heart Valve Dis 10(6):736–741

    CAS  PubMed  Google Scholar 

  • Etnel JRG, Elmont LC, Ertekin E et al (2016) Outcome after aortic valve replacement in children: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 151(1):143–152

    Article  PubMed  Google Scholar 

  • Flameng W, Daenen W, Jashari R et al (2015) Durability of homografts used to treat complex aortic valve endocarditis. Ann Thorac Surg 99:1234–1238

    Article  PubMed  Google Scholar 

  • Fukushima S, Tesar PJ, Pearse B et al (2014) Long-term clinical outcomes after aortic valve replacement using cryopreserved allograft. J Thorac Cardiovasc Surg 148(1):65–72

    Article  PubMed  Google Scholar 

  • Ganguly G, Akhunji ZA, Neethling WML et al (2004) Homograft aortic valve replacement—the experience of one unit. Heart Lung Circ 13:161–167

    Article  PubMed  Google Scholar 

  • Gonzalez-Lavin L, Robles A, Graf D (1988) The Ross operation: the autologous pulmonary valve in the aortic position. J Card Surg 3(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Grosse K, Meyer R, Schmitzer E et al (2008) Are heart valves from donors over 65 years of age morphologically suitable for transplantation? Cell Tissue Bank 9(1):31–36

    Article  PubMed  Google Scholar 

  • Gulbins H, Kreuzer E, Reichart B (2003) Homografts: a review. Expert Rev Cardiovasc Ther 1(4):533–539

    Article  PubMed  Google Scholar 

  • Henaine R, Robertie F, Vergant M et al (2012) Valve replacement in children: a challenge for a whole life. Arch Cardiovasc Dis 105:517–528

    Article  PubMed  Google Scholar 

  • Johnston DR, Soltesz EG, Vakil N et al (2015) Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Ann Thorac Surg 99:1239–1247

    Article  PubMed  Google Scholar 

  • Kalfa D, Feier H, Loundou A et al (2011) Cryopreserved homograft in the Ross procedure: outcomes and prognostic factors. J Heart Valve Dis 20(5):571–581

    PubMed  Google Scholar 

  • Kalfa D, Mohammadi S, Kalavrouziotis D et al (2014) Long-term outcomes of the Ross procedure in adults with severe aortic stenosis: single-center experience with 20 years of follow-up. Eur J Cardiothorac Surg 2:1–9

    Google Scholar 

  • Khan SS, Trento A, DeRobertis M et al (2001) Twenty-year comparison of tissue and mechanical valve replacement. J Thorac Cardiovasc Surg 122(2):257–269

    Article  CAS  PubMed  Google Scholar 

  • Kilian E, Fries F, Kowert A et al (2010) Homograft implantation for aortic valve replacement since 15 years: results and follow-up. Heart Surg Forum 13(4):E238–E242. doi:10.1532/HSF98.20091160

    Article  PubMed  Google Scholar 

  • Kitamura S, Yagihara T, Kobayashi J et al (2011) Mid- to long-term outcomes of cardiovascular tissue replacements utilizing homografts harvested and stored at Japanese Institutional Tissue Banks. Surg Today 41:500–509

    Article  PubMed  Google Scholar 

  • Koolbergen DR, Hazekamp MG, de Heer E et al (2002) The pathology of fresh and cryopreserved homograft heart valves: an analysis of forty explanted homograft valves. J Thorac Cardiovasc Surg 124(4):689–697

    Article  PubMed  Google Scholar 

  • Kouchokos NT, Masetti P, Nickerson NJ et al (2004) The Ross procedure: long-term clinical and echocardiographic follow-up. Ann Thorac Surg 78:773–781

    Article  Google Scholar 

  • Lund O, Chandrasekaran V, Grocott-Mason R et al (1999) Primary aortic valve replacement with allografts over twenty-five years: valve-related and procedure-related determinants of outcome. J Thorac Cardiovasc Surg 117:77–91

    Article  CAS  PubMed  Google Scholar 

  • Mokhles MM, van der Woestijne PC, de Jong PL et al (2011) Clinical outcome and health-related quality of life after right-ventricular-outflow-tract reconstruction with an allograft conduit. Eur J Cardiothorac Surg 40(3):571–578

    PubMed  Google Scholar 

  • Nappi F, Al-Attar N, Spadaccio C et al (2014) Aortic valve homograft: 10-year experience. Surg Technol Int 24:265–272

    PubMed  Google Scholar 

  • Nishida T, Tominaga R (2013) A look at recent improvements in the durability of tissue valves. Gen Thorac Cardiovasc Surg 61:182–190

    Article  PubMed  Google Scholar 

  • Niwaya K, Kobayashi J (2007) Medium-term results of aortic valve replacement with cryopreserved homograft valves: importance of a domestic homograft valve bank. Nihon Geka Gakkai Zasshi 108(2):85–88

    PubMed  Google Scholar 

  • O’Brien MF, Harrocks S, Stafford EG et al (2001) The homograft aortic valve: a 29-year, 99.3% follow up of 1022 valve replacements. J Heart Valve Dis 10(3):334–344

    PubMed  Google Scholar 

  • Poynter JA, Eghtesady P, McCrindle BW et al (2013) Association of pulmonary conduit type and size with durability in infants and young children. Ann Thorac Surg 96:1695–1702

    Article  PubMed  Google Scholar 

  • Reece TB, Welke KF, O’Brien S et al (2014) Rethinking the Ross procedure in adults. Ann Thorac Surg 97(1):175–181

    Article  PubMed  Google Scholar 

  • Ross DN (1987) Application of homografts in clinical surgery. J Card Surg 2(1 Suppl):175–183

    Article  CAS  PubMed  Google Scholar 

  • Sadowski J, Kapelak B, Bartus K et al (2003) Reoperation after fresh homograft replacement: 23 years’ experience with 655 patients. Eur J Cardiothorac Surg 23(6):996–1000

    Article  PubMed  Google Scholar 

  • Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79:1072–1080

    Article  PubMed  Google Scholar 

  • Shapira OM, Shemin RJ (1994) Aortic valve replacement with cryoprserved allografts: mid-term results. J Card Surg 9(3):292–297

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, Kim YH, Ko JK et al (2013) Outcomes of mechanical valves in the pulmonic position in patients with congenital heart disease over a 20-year period. Ann Thorac Surg 95(4):1367–1371

    Article  PubMed  Google Scholar 

  • Stelzer P (2011) The Ross procedure: state of the art 2011. Semin Thorac Cardiovasc Surg 23(2):115–123

    Article  PubMed  Google Scholar 

  • Takkenberg JJM, van Herwerden LA, Eijkemans MJC et al (2002) Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. Eur J Cardiothorac Surg 21(4):683–691

    Article  CAS  PubMed  Google Scholar 

  • Tierney ESS, Gersony WM, Altmann K et al (2005) Pulmonary position cryopreserved homografts: durability in pediatric Ross and non-Ross patients. J Thorac Cardiovasc Surg 130:282–286

    Article  Google Scholar 

  • Tweddell JS, Pelech AN, Frommelt PC et al (2000) Factors affecting longevity of homograft valves used in right ventricular outflow tract reconstruction for congenital heart disease. Circulation 102(Suppl 3):130–135

    Google Scholar 

  • Une D, Ruel M, David TE (2014) Twenty-year durability of the aortic Hancock II bioprosthesis in young patients: Is it durable enough? Eur J Cardiothorac Surg 46(5):825–830

    Article  PubMed  Google Scholar 

  • Vicchio M, Della Corte A, De Santo LS et al (2008) Tissue versus mechanical prostheses: quality of life in octogenarians. Ann Thorac Surg 85:1290–1295

    Article  PubMed  Google Scholar 

  • Vuran C, Simon P, Wollenek G et al (2012) Midterm results of aortic valve replacement with cryopreserved homografts. Balkan Med J 29:170–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Waszyrowski T, Kasprzak JD, Krzeminska-Pakula M et al (1997) Early and long-term outcome of aortic valve replacement with homograft varsus mechanical prosthesis: 8-year follow-up study. Clin Cardiol 20(10):843–848

    Article  CAS  PubMed  Google Scholar 

  • Yang CC, Wei HJ, Hsieh SR et al (2014) Excellent mid-term durability of the On-X mechanical aortic valve in the pulmonary position with a low international normalized ratio. J Heart Valve Dis 23(3):333–337

    PubMed  Google Scholar 

  • Yap CH, Yii M (2004) Allograft aortic valve replacement in the adult: a review. Heart Lung Circ 13(1):41–51

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The valuable contribution of the colleagues in recipients’ hospitals who shared the patients’ follow-up data deserves authors’ sincere appreciation.

Funding

This research was supported by Tehran University of Medical Sciences and Health Services Grant 94-02-52-29229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Mahdavi-Mazdeh.

Ethics declarations

Conflict of interest

Authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary Rouchi, A., Radmehr, H., Tavakoli, S.A. et al. Iranian homograft heart valves: assessment of durability and late outcome. Cell Tissue Bank 17, 603–610 (2016). https://doi.org/10.1007/s10561-016-9573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9573-6

Keywords

Navigation