Skip to main content

Advertisement

Log in

Mesenchymal stem cells for chronic wounds therapy

  • Review Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Wound healing is a complex process that involves interaction of soluble mediators, extracellular matrix and infiltrating blood cells. Chronic and non-healing skin defects contribute significantly to morbidity and mortality of many patients. Recently, despite the current medical progress, the chronic and non-healing wounds still represent a serious medical problem. In many cases, conventional therapeutic approaches, such as dermal substitutes and growth factor therapy failed and do not produce the expected results, patients are exposed to a high risk of infection, sepsis or amputation. For that reason clinicians and researchers are forced to searching for alternative methods to induce healing process which may result into complete wound closure. Mesenchymal stem cells (MSCs) represent a unique tool of tissue engineering and regenerative medicine and a promising therapeutic strategy. Due to their unique biological properties, MSCs seem to be the perspective modality method for these patients. Many preclinical and clinical studies suggest the possibility of using these cells in tissue regeneration, healing acute and chronic wounds and scar remodelling. The objective of the present review is to summarize the current information and preclinical data about MSCs, their biological characteristics and mode of action during regenerative and healing processes, as well as their clinical application in chronic wounds treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamkov M, Halasova E, Rajcani J, Bencat M, Vybohova D, Rybarova S, Galbavy S (2011) Relation between expression pattern of p53 and survivin in cutaneous basal cell carcinomas. Med Sci Monit 17:74–80

    Article  Google Scholar 

  • Adamkov M, Kajo K, Vybohova D, Krajcovic J, Stuller F, Rajcani J (2012) Correlations of survivin expression with clinicomorphological parameters and hormonal receptor status in breast ductal carcinoma. Neoplasma 59:30–37

    Article  CAS  PubMed  Google Scholar 

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25:803–816

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Cambal M, Labas P, Zonca P, Hrbaty B, Janik M, Polakovicova S (2012) The combined algorithm of venous ulcer therapy. Bratisl Lek Listy 113:285–288

    CAS  PubMed  Google Scholar 

  • Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324

    Article  CAS  PubMed  Google Scholar 

  • Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12:359–366

    Article  CAS  PubMed  Google Scholar 

  • Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1 + marrow cell population is multipotential. Cells Tissues Organs 170:73–82

    Article  PubMed  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Dorai AA (2012) Wound care with traditional, complementary and alternative medicine. Indian J Plast Surg 45:418–424

    Article  PubMed Central  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  • Fu X, Fang L, Li X, Cheng B, Sheng Z (2006) Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 14:325–335

    Article  PubMed  Google Scholar 

  • Gottrup F, Apelqvist J, Price P (2010) Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care 19:237–268

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Gruber R, Kandler B, Holzmann P, Vogele-Kadletz M, Losert U, Fischer MB, Watzek G (2005) Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng 11:896–903

    Article  CAS  PubMed  Google Scholar 

  • Hamou C, Callaghan MJ, Thangarajah H, Chang E, Chang EI, Grogan RH, Paterno J, Vial IN, Jazayeri L, Gurtner GC (2009) Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 123:45–55

    Article  Google Scholar 

  • Harada K, Yamahara K, Ohnishi S, Otani K, Kanoh H, Ishibashi-Ueda H, Minamino N, Kangawa K, Nagaya N, Ikeda T (2011) Sustained-release adrenomedullin ointment accelerates wound healing of pressure ulcers. Regul Pept 168:21–26

    Article  CAS  PubMed  Google Scholar 

  • Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  CAS  PubMed  Google Scholar 

  • Huang TF, Chen YT, Yang TH, Chen LL, Chiou SH, Tsai TH, Tsai CC, Chen MH, Ma HL, Hung SC (2008) Isolation and characterization of mesenchymal stromal cells from human anterior cruciate ligament. Cytotherapy 10:806–814

    Article  CAS  PubMed  Google Scholar 

  • Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1:44–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216

    Google Scholar 

  • Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J, Thomas ED, Thorning D, Fialkow PJ (1982) Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 298:280–283

    Article  CAS  PubMed  Google Scholar 

  • Kestendjieva S, Kyurkchiev D, Tsvetkova G, Mehandjiev T, Dimitrov A, Nikolov A, Kyurkchiev S (2008) Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int 32:724–732

    Article  CAS  PubMed  Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Article  PubMed Central  PubMed  Google Scholar 

  • Li L, Jiang J (2011) Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front Med 5:33–39

    Article  PubMed  Google Scholar 

  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  CAS  PubMed  Google Scholar 

  • Lozito TP, Kuo CK, Taboas JM, Tuan RS (2009) Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 107:714–722

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92:26–36

    Article  PubMed  Google Scholar 

  • Maeda T, Kurita R, Yokoo T, Tani K, Makino N (2011) Telomerase inhibition promotes an initial step of cell differentiation of primate embryonic stem cell. Biochem Biophys Res Commun 407:491–494

    Article  CAS  PubMed  Google Scholar 

  • Maximow A (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. Folia Haematologica 8:125–134

    Google Scholar 

  • Maxson S, Erasmo AL, Yoo D, Danilkovitch-Miagkova A, Leroux M (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Trans Med 1:142–149

    Article  CAS  Google Scholar 

  • Oberyszyn TM (2007) Inflammation and wound healing. Front Biosci 12:2993–2999

    Article  CAS  PubMed  Google Scholar 

  • Pappenheim A (1917) Prinzipien der neueren morphologischen Haematozytologie nach zytogenetischer Grundlage. Folia Haematol (Lipz.) 21:91

    Google Scholar 

  • Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE (2012) Defining the nature of human pluripotent stem cell progeny. Cell Res 22:178–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Procházka V, Gumulec J, Jalůvka F, Salounová D, Jonszta T, Czerný D, Krajča J, Urbanec R, Klement P, Martinek J, Klement GL (2010) Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant 19:1413–1424

    Article  PubMed  Google Scholar 

  • Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Stem Cell 2:141–150

    CAS  Google Scholar 

  • Renault MA, Roncalli J, Tongers J, Misener S, Thorne T, Jujo K, Ito A, Clarke T, Fung C, Millay M, Kamide C, Scarpelli A, Klyachko E, Losordo DW (2009) The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ Res 105:818–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojewski MT, Weber BM, Schrezenmeier H (2008) Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35:168–184

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    Article  CAS  PubMed  Google Scholar 

  • Shanti RM, Li WJ, Nesti LJ, Wang X, Tuan RS (2007) Adult mesenchymal stem cells: biological properties, characteristics, and applications in maxillofacial surgery. J Oral Maxillofac Surg 65:1640–1647

    Article  PubMed  Google Scholar 

  • Silver GA (1987) Virchov, the heroic model in medicine: health policy by accolade. Am J Public Health 77:82–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siminovitch L, McMulloch EA, Till JE (1963) The distribution of colony- forming cells among spleen colonies. J Cell Physiol 62:327–336

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tapp H, Hanley EN Jr, Patt JC, Gruber HE (2009) Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood) 234:1–9

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation res 14:213–222

    Article  CAS  PubMed  Google Scholar 

  • Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, Takakura Y, Okuchi K, Nonomura A (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121:860–877

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Health of the Slovak Republic under the project No. 2012/4-UKBA-4 and partly by Grant APVV No. 0434-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bohac.

Additional information

Peter Zahorec and Martin Bohac have contributed equally and to be considered as equal first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahorec, P., Koller, J., Danisovic, L. et al. Mesenchymal stem cells for chronic wounds therapy. Cell Tissue Bank 16, 19–26 (2015). https://doi.org/10.1007/s10561-014-9440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9440-2

Keywords

Navigation