Advertisement

Cell and Tissue Banking

, Volume 15, Issue 4, pp 555–565 | Cite as

Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton’s jelly matrix

  • Fatemeh Hendijani
  • Hojjat Sadeghi-Aliabadi
  • Shaghayegh Haghjooy JavanmardEmail author
Original Paper

Abstract

Adult stem cells are of particular importance for applications in regenerative medicine. Umbilical cord was established recently as an alternative source of mesenchymal stem cell (MSC) instead of bone marrow (BM) and is superior to BM and other adult tissues according to several MSC properties. Additionally, for the purpose of cell therapy in clinical scale, steps of cell isolation, expansion and culture required to be precisely adjusted in order to obtain the most cost-effective, least time-consuming, and least labor-intensive method. Therefore, in this study, we are going to compare two simple and cost-effective explant culture methods for isolation of MSCs from human umbilical cord. One of the methods isolates cells from entire cord and the other from Wharton’s jelly matrix. Isolated cells then cultured in simple medium without addition of any growth factor. MSCs obtained via both methods display proper and similar characteristics according to morphology, population doubling time, post-thaw survival, surface antigenicity and differentiation into adipocytes, osteocytes, and chondrocytes. MSCs can easily be obtained from the entire cord and Wharton’s jelly, and it seems that both tissues are appropriate sources of stem cells for potential use in regenerative medicine. However, from technical largescale preview, MSC isolation from entire cord piece is less labor-intensive and time-consuming than from Wharton’s jelly part of the cord.

Keywords

Mesenchymal stem cells Umbilical cord Wharton’s jelly Human Explant culture 

Abbreviations

WJ

Wharton’s jelly

UC

Umbilical cord

MSC

Mesenchymal stem cell

ESC

Embryonic stem cell

hMSC

Human mesenchymal stem cell

WJ-MSCs

Wharton’s jelly mesenchymal stem cells

UC-MSCs

Umbilical cord mesenchymal stem cells

DMEM

Dulbecco’s Modified Eagle Medium

EDTA

Ethylenediaminetetraacetic acid

FBS

Fetal bovine serum

PBS

Phosphate buffer solution

DMSO

Dimethyl sulfoxide

PDT

Population doubling time

FITC

Fluorescein isothiocyanate

Ca

Calcium

PE

Phycoerythrin

bFGF

Basic fibroblast growth factor

TGFb

Transforming growth factor beta

PDGF

Platelet-derived growth factor

References

  1. Atala A, Lanza P (2002) Methods of tissue engineering. Academic Press, San DiegoGoogle Scholar
  2. Bordet S, Nguyen TM, Knoppers BM, Isasi R (2010) Use of umbilical cord blood for stem cell research. Journal of Obstetrics and Gynaecology Canada (Journal d’obstetrique et gynecologie du Canada) (JOGC) 32(1):58–61Google Scholar
  3. Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25(11):2886–2895. doi: 10.1634/stemcells.2007-0417 PubMedCrossRefGoogle Scholar
  4. Carlin R, Davis D, Weiss M, Schultz B, Troyer D (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8. doi: 10.1186/1477-7827-4-8 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Christodoulou I, Kolisis FN, Papaevangeliou D, Zoumpourlis V (2013) Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells Int 2013:246134. doi: 10.1155/2013/246134 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Condic ML, Rao M (2010) Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 19(8):1121–1129. doi: 10.1089/scd 2009.0482PubMedCentralPubMedCrossRefGoogle Scholar
  7. Corrao S, La Rocca G, Lo Iacono M, Corsello T, Farina F, Anzalone R (2013) Umbilical cord revisited: from Wharton’s jelly myofibroblasts to mesenchymal stem cells. Histol Histopathol 28(10):1235–44Google Scholar
  8. Fan CG, Zhang QJ, Zhou JR (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev 7(1):195–207. doi: 10.1007/s12015-010-9168-8 PubMedCrossRefGoogle Scholar
  9. Fong CY, Richards M, Manasi N, Biswas A, Bongso A (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 15(6):708–718PubMedCrossRefGoogle Scholar
  10. Fong CY, Subramanian A, Biswas A, Gauthaman K, Srikanth P, Hande MP, Bongso A (2010) Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton’s jelly stem cells. Reprod Biomed Online 21(3):391–401. doi: 10.1016/j.rbmo.2010.04.010 PubMedCrossRefGoogle Scholar
  11. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7(1):1–16. doi: 10.1007/s12015-010-9166-x PubMedCrossRefGoogle Scholar
  12. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124. doi: 10.1634/stemcells.2005-0053 PubMedCrossRefGoogle Scholar
  13. Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J (2013) Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology. doi: 10.1007/s10616-012-9528-0 PubMedCentralGoogle Scholar
  14. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal (CCS) 9:12. doi: 10.1186/1478-811X-9-12 CrossRefGoogle Scholar
  15. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90(2):261–269PubMedCrossRefGoogle Scholar
  16. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331. doi: 10.1634/stemcells.2006-0286 PubMedCrossRefGoogle Scholar
  17. Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ (2011) Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 346(1):53–64PubMedCrossRefGoogle Scholar
  18. La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasa L, Cappello F, Zummo G, Farina F (2009) Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131(2):267–282. doi: 10.1007/s00418-008-0519-3 PubMedCrossRefGoogle Scholar
  19. Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30(1):9–28. doi: 10.1186/1756-9966-30-9 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91(8):1017–1026PubMedGoogle Scholar
  21. Majore I, Moretti P, Stahl F, Hass R, Kasper C (2011) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev 7(1):17–31. doi: 10.1007/s12015-010-9165-y PubMedCrossRefGoogle Scholar
  22. Miki T (2011) Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther 2(3):25. doi: 10.1186/scrt66 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4(1):27–49. doi: 10.1007/s12015-008-9008-2 PubMedCrossRefGoogle Scholar
  24. Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116(11):2519–2530. doi: 10.1002/cncr.25056 PubMedCrossRefGoogle Scholar
  25. O’Brien TA, Tiedemann K, Vowels MR (2006) No longer a biological waste product: umbilical cord blood. Med J Aust 184(8):407–410PubMedGoogle Scholar
  26. Otte A, Bucan V, Reimers K, Hass R (2013) Mesenchymal stem cells maintain long-term in vitro stemness during explant culture. Tissue Eng C Methods. doi: 10.1089/ten.TEC.2013.0007 Google Scholar
  27. Petsa A, Gargani S, Felesakis A, Grigoriadis N, Grigoriadis I (2009) Effectiveness of protocol for the isolation of Wharton’s jelly stem cells in large-scale applications. Vitro Cell Dev Biol Anim 45(10):573–576. doi: 10.1007/s11626-009-9227-0 CrossRefGoogle Scholar
  28. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, Wang X, Chen Y (2008) Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 32(1):8–15. doi: 10.1016/j.cellbi.2007.08.002 PubMedCrossRefGoogle Scholar
  29. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110. doi: 10.1634/stemcells.21-1-105 PubMedCrossRefGoogle Scholar
  30. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, Samani FS, Torshizi Z, Nematollahi-Mahani SN (2012) Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. Vitro Cell Dev Biol Anim 48(2):75–83CrossRefGoogle Scholar
  31. Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4(8):e6498. doi: 10.1371/journal.pone.0006498 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Seshareddy K, Troyer D, Weiss ML (2008) Method to isolate mesenchymal-like cells from Wharton’s jelly of umbilical cord. Methods Cell Biol 86:101–119PubMedCrossRefGoogle Scholar
  33. Sobolewski K, Malkowski A, Bankowski E, Jaworski S (2005) Wharton’s jelly as a reservoir of peptide growth factors. Placenta 26(10):747–752. doi: 10.1016/j.placenta.2004.10.008 PubMedCrossRefGoogle Scholar
  34. Taghizadeh RR, Cetrulo KJ, Cetrulo CL (2011) Wharton’s jelly stem cells: future clinical applications. Placenta 32(Suppl. 4):S311–S315PubMedCrossRefGoogle Scholar
  35. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, Ramasamy R (2011) Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol Int 35(3):221–226. doi: 10.1042/CBI20100326 PubMedCrossRefGoogle Scholar
  36. Tsagias N, Koliakos I, Karagiannis V, Eleftheriadou M, Koliakos GG (2011) Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfus Med 21(4):253–261. doi: 10.1111/j.1365-3148.2011.01076.x PubMedCrossRefGoogle Scholar
  37. Venugopal P, Balasubramanian S, Sen Majumdar A, Ta M (2011) Isolation, characterization, and gene expression analysis of Wharton’s jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning Adv Appl 4:39–50. doi: 10.2147/SCCAA.S17548 Google Scholar
  38. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337PubMedCrossRefGoogle Scholar
  39. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24(3):781–792PubMedCrossRefGoogle Scholar
  40. Yoon JH, Roh EY, Shin S, Jung NH, Song EY, Chang JY, Kim BJ, Jeon HY (2013) Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Res Int 8 Article ID 428726. doi: 10.1155/2013/428726

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fatemeh Hendijani
    • 1
  • Hojjat Sadeghi-Aliabadi
    • 1
  • Shaghayegh Haghjooy Javanmard
    • 2
    Email author
  1. 1.Department of Pharmaceutical Biotechnology, Faculty of PharmacyIsfahan University of Medical SciencesEsfahānIran
  2. 2.Applied Physiology Research CenterIsfahan University of Medical SciencesEsfahānIran

Personalised recommendations