Cell and Tissue Banking

, Volume 15, Issue 3, pp 319–327 | Cite as

The effect of non-growth factors on chondrogenic differentiation of mesenchymal stem cells

  • Xiujie Zhang
  • Yumin Zhang
  • Zhiqiang Wang
  • Qijia Li
  • Baoxing Li
Review Paper


Chondrogenic differentiation of mesenchymal stem cells (MSCs) in vitro usually requires the presence of growth factors in the culture condition. But many cost-effect methods can successfully fulfill this without addition of these cytokines. This article focuses upon the effect of non-growth factors on the chondrogenic differentiation of MSCs and the concise introduction of the potential mechanism of these methods.


Non-growth factors Chondrogenesis Mesenchymal stem cells 


  1. Afoke NY, Byers PD, Hutton WC (1987) Contact pressures in the human hip joint. J Bone Joint Surg Br 69:536–541PubMedGoogle Scholar
  2. Ahtiainen K, Sippola L, Nurminen M, Mannerström B, Haimi S et al (2012) Effects of chitosan and bioactive glass modifications of knitted and rolled polylactide-based 96/4 L/D scaffolds on chondrogenic differentiation of adipose stem cells. J Tissue Eng Regen Med. doi: 10.1002/term.1614
  3. Bassett CA, Pawluk RJ, Pilla AA (1974) Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann NY Acad Sci 238:242–262PubMedCrossRefGoogle Scholar
  4. Bian L, Zhai DY, Mauck RL, Burdick JA (2011) Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 17:1137–1145PubMedCentralPubMedCrossRefGoogle Scholar
  5. Campbell JJ, Lee DA, Bader DL (2006) Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43:455–470PubMedGoogle Scholar
  6. Chen CH, Lin YS, Fu YC, Wang CK, Wu SC et al (2013) Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro. J Appl Physiol 114:647–655PubMedCrossRefGoogle Scholar
  7. Choi BH, Woo JI, Min BH, Park SR (2006) Low-intensity ultrasound (LIUS) stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture. J Biomed Mater Res 79:858–864CrossRefGoogle Scholar
  8. Cook SD, Salkeld SL, Popich-Patron LS, Ryaby JP, Jones DG et al (2001) Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res 391:231–243CrossRefGoogle Scholar
  9. Cui JH, Park SR, Park K, Choi BH, Min BH (2007) Preconditioning of mesenchymal stem cells with low intensity ultrasound for cartilage formation in vivo. Tissue Eng 13:351–360PubMedCrossRefGoogle Scholar
  10. Elder BD, Athanasiou KA (2009) Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev 15:43–53PubMedCentralPubMedCrossRefGoogle Scholar
  11. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  12. Freyria AM, Mallein-Gerin F (2012) Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury 43:259–265PubMedCrossRefGoogle Scholar
  13. Geiger B, Yamada KM (2011) Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 3:a005033PubMedCentralPubMedGoogle Scholar
  14. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805PubMedCrossRefGoogle Scholar
  15. Gemmiti CV, Guldberg RE (2009) Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol Bioeng 104:809–820PubMedCentralPubMedGoogle Scholar
  16. Glennon-Alty L, Williams R, Dixon S, Murray P (2013) Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates. Acta Biomater 9:6041–6051PubMedCentralPubMedCrossRefGoogle Scholar
  17. Grad S, Lee CR, Wimmer MA, Alini M (2006) Chondrocyte gene expression under applied surface motion. Biorheology 43:259–269PubMedGoogle Scholar
  18. Griffin XL, Warner F, Costa M (2008) The role of electromagnetic stimulation in the management of established non-union of long bone fractures: what is the evidence? Injury 39:419–429PubMedCrossRefGoogle Scholar
  19. Hangody L, Feczko P, Bartha L, Bodo G, Kish G (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res 391:328–336CrossRefGoogle Scholar
  20. Heckman JD, Ingram AJ, Loyd RD, Luck JV Jr, Mayer PW (1981) Nonunion treatment with pulsed electromagnetic fields. Clin Orthop Relat Res 161:58–66Google Scholar
  21. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323PubMedCrossRefGoogle Scholar
  22. Huang AH, Farrell MJ, Kim M, Mauck RL (2010) Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cell Mater 19:72–85PubMedCentralPubMedGoogle Scholar
  23. Hung CT, Mauck RL, Wang CC, Lima EG, Ateshian GA (2004) A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng 32:35–49PubMedCrossRefGoogle Scholar
  24. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463PubMedCrossRefGoogle Scholar
  25. Izal I, Aranda P, Sanz-Ramos P, Ripalda P, Mora G et al (2013) Culture of human bone marrow-derived mesenchymal stem cells on of poly(L-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surg Sports Traumatol Arthrosc 21:1737–1750PubMedCrossRefGoogle Scholar
  26. Jansen JH, van der Jagt OP, Punt BJ, Verhaar JA, van Leeuwen JP et al (2010) Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord 11:188PubMedCentralPubMedCrossRefGoogle Scholar
  27. Jeong JY, Park SH, Shin JW, Kang YG, Han KH et al (2012) Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture. J Mater Sci Mater Med 23:2773–2781PubMedCrossRefGoogle Scholar
  28. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272PubMedCrossRefGoogle Scholar
  29. Kisiday JD, Frisbie DD, McIlwraith CW, Grodzinsky AJ (2009) Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng Part A 15:2817–2824PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lee HJ, Choi BH, Min BH, Son YS, Park SR (2006) Low-intensity ultrasound stimulation enhances the chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif Organs 30:707–715PubMedCrossRefGoogle Scholar
  31. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ (2009a) Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-β pathway. J Cell Mol Med 14:1338–1346PubMedCrossRefGoogle Scholar
  32. Li Z, Yao SJ, Alini M, Stoddart MJ (2009b) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A 15:1729–1737PubMedCrossRefGoogle Scholar
  33. Liu X, Sun H, Yan D, Zhang L, Lv X et al (2010a) In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 31:9406–9414PubMedCrossRefGoogle Scholar
  34. Liu Y, Zhang L, Zhou G, Li Q, Liu W et al (2010b) In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 31:2176–2183PubMedCrossRefGoogle Scholar
  35. Liu H, Lu K, MacAry PA, Wong KL, Heng A et al (2012) Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells. J Cell Sci 125:200–208PubMedCrossRefGoogle Scholar
  36. Lv X, Zhou G, Liu X, Liu H, Chen J et al (2012) Chondrogenesis by co-culture of adipose-derived stromal cells and chondrocytes in vitro. Connect Tissue Res 53:492–497PubMedCrossRefGoogle Scholar
  37. Min BH, Woo JI, Cho HS, Choi BH, Park SJ et al (2006) Effects of low intensity ultrasound (LIUS) stimulation on human cartilage explants. Scand J Rheumatol 35:305–311PubMedCrossRefGoogle Scholar
  38. Min BH, Choi BH, Park SR (2007) Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. Biotechnol Bioproc Eng 12:22–31CrossRefGoogle Scholar
  39. Miyanishi K, Trindade MC, Lindsey DP, Beaupré GS, Carter DR et al (2006) Effects of hydrostatic pressure and transforming growth factor-3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12:1419–1428PubMedCrossRefGoogle Scholar
  40. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME (2007) Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663PubMedCrossRefGoogle Scholar
  41. Mow VC, Wang CC (1999) Some bioengineering considerations for tissue engineering of articular cartilage. Clin Orthop Relat Res 367:S204–S223PubMedCrossRefGoogle Scholar
  42. Nieminen HJ, Saarakkala S, Laasanen MS, Hirvonen J, Jurvelin JS et al (2004) Ultrasound attenuation in normal and spontaneously degenerated articular cartilage. Ultrasound Med Biol 30:493–500PubMedCrossRefGoogle Scholar
  43. Nishikori T, Ochi M, Uchio Y, Maniwa S, Kataoka H et al (2002) Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel. J Biomed Mater Res 59:201–206PubMedCrossRefGoogle Scholar
  44. Nöth U, Rackwitz L, Heymer A, Weber M, Baumann B et al (2007) Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A 83:626–635PubMedCrossRefGoogle Scholar
  45. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME (1999) Low intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 17:488–494PubMedCrossRefGoogle Scholar
  46. Patil AS, Sable RB, Kothari RM (2012) Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol 227:1796–1804PubMedCrossRefGoogle Scholar
  47. Pelaez D, Huang CY, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18:93–102PubMedCrossRefGoogle Scholar
  48. Rossignol J, Boyer C, Thinard R, Remy S, Dugast AS et al (2009) Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. J Cell Mol Med 13:2547–2558PubMedCrossRefGoogle Scholar
  49. Rui YF, Du L, Wang Y, Wang Y, Lui PP et al (2010) Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells. Chin Med J 123:3040–3048PubMedGoogle Scholar
  50. Schätti O, Grad S, Goldhahn J, Salzmann G, Li Z et al (2011) A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater 22:214–225PubMedGoogle Scholar
  51. Shintani N, Siebenrock KA, Hunziker EB (2013) TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One 8:e53086PubMedCentralPubMedCrossRefGoogle Scholar
  52. Singh P, Schwarzbauer JE (2012) Fibronectin and stem cell differentiation-lessons from chondrogenesis. J Cell Sci 125:3703–3712PubMedCentralPubMedCrossRefGoogle Scholar
  53. Singh N, Rahatekar SS, Koziol KK, Ng TS, Patil AJ et al (2013) Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 14:1287–1298PubMedCrossRefGoogle Scholar
  54. Song B, Estrada KD, Lyons KM (2009) Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 20:379–388PubMedCentralPubMedCrossRefGoogle Scholar
  55. Steward AJ, Liu Y, Wagner DR (2011) Engineering cell attachments to scaffolds in cartilage tissue engineering. JOM 63:74–82CrossRefGoogle Scholar
  56. Steward AJ, Thorpe SD, Vinardell T, Buckley CT, Wagner DR (2012) Cell–matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomater 8:2153–2159PubMedCrossRefGoogle Scholar
  57. Suh N, Wang Y, Honda T, Gribble GW, Dmitrovsky E et al (1999) A novel synthetic oleanane triterpenoid,2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res 59:336–341PubMedGoogle Scholar
  58. Suh N, Roberts AB, Reffey SB, Miyazono K, Itoh S et al (2003) Synthetic triterpenoids enhance transforming growth factor beta/Smad signaling. Cancer Res 63:1371–1376PubMedGoogle Scholar
  59. Suh N, Paul S, Lee HJ, Yoon T, Shah N et al (2012) Synthetic triterpenoids, CDDO-Imidazolide and CDDO-Ethyl amide, induce chondrogenesis. Osteoarthr Cartil 20:446–450PubMedCrossRefGoogle Scholar
  60. Tang J, Peng R, Ding J (2010) The regulation of stem cell differentiation by cell–cell contact on micropatterned material surfaces. Biomaterials 31:2470–2476PubMedCrossRefGoogle Scholar
  61. Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA et al (2008) Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun 377:458–462PubMedCrossRefGoogle Scholar
  62. Tortelli F, Cancedda R (2009) Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur Cells Mater 17:1–14Google Scholar
  63. Von Eisenhart R, Adam C, Steinlechner M, Muller-Gerbl M, Eckstein F (1999) Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res 17:532–539CrossRefGoogle Scholar
  64. Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA (2007) Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater 13:66–73PubMedGoogle Scholar
  65. Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML (2010) Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31:631–640PubMedCrossRefGoogle Scholar
  66. Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M et al (2012) Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 18:1542–1551PubMedCrossRefGoogle Scholar
  67. Wu SC, Chen CH, Chang JK, Fu YC, Wang CK et al (2013) Hyaluronan initiates chondrogenesis mainly via CD44 in human adipose derived stem cells. J Appl Physiol 114:1610–1618PubMedCrossRefGoogle Scholar
  68. Xue JX, Gong YY, Zhou DG, Liu W, Cao Y et al (2012) Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials 33:5832–5840PubMedCrossRefGoogle Scholar
  69. Yang Q, Peng J, Guo Q, Huang J, Zhang L et al (2008) A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 29:2378–2387PubMedCrossRefGoogle Scholar
  70. Zhang ZJ, Huckle J, Francomano CA, Spencer RGS (2002) The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study. Ultrasound Med Biol 28:1547–1553PubMedCrossRefGoogle Scholar
  71. Zhang L, Yuan T, Guo L, Zhang X (2012) An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res Part A 100:2717–2725CrossRefGoogle Scholar
  72. Zheng L, Fan HS, Sun J, Chen XN, Wang G (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93:783–792PubMedGoogle Scholar
  73. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J et al (2004) Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279:54463–54469PubMedCrossRefGoogle Scholar
  74. Zhou G, Liu W, Cui L, Wang X, Liu T et al (2006) Repair of porcine articular osteochondral defects in non-weight bearing areas with autologous bone marrow stromal cells. Tissue Eng 12:3209–3221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xiujie Zhang
    • 2
  • Yumin Zhang
    • 1
  • Zhiqiang Wang
    • 3
  • Qijia Li
    • 4
  • Baoxing Li
    • 1
  1. 1.China Institute for Radiation ProtectionShanxi Provincial Tissue BankTaiyuanChina
  2. 2.Southern Medical UniversityGuangzhouChina
  3. 3.Affiliated Hospital of Hebei United UniversityTangshanChina
  4. 4.Hebei United UniversityTangshanChina

Personalised recommendations