Cell and Tissue Banking

, Volume 14, Issue 1, pp 77–84 | Cite as

Use of irradiated human amnion as a matrix for limbal stem cell culture

  • Carlos Landa-Solís
  • Leticia Vázquez-Maya
  • María Esther Martínez-Pardo
  • Ana M. Brena-Molina
  • Erika Ruvalcaba
  • Ricardo Gómez
  • Clemente Ibarra
  • Cristina Velasquillo
Original Paper


Several ocular diseases affect the corneal surface; the development of effective technologies for the treatment of corneal lesions has brought about an improvement in the quality of life of affected patients. The aim of this study is to culture and characterize limbal stem cells cultured on gamma (60Co) radiosterilized human amnion (RHA). Limbal stem cells were isolated from ten preserved samples of corneal transplant. The cells were cultured since primary culture until expanded cells on RHA and stained with monoclonal antibodies to establish their immunophenotype, after which cytokeratin 12 and Vimentin were positive by immunohistochemistry. The immunophenotype remained constant since primary culture until expanded cells in RHA. The RHA and cells construct were structurally integrated. Immunohistochemistry was cytokeratin 12, Vimentin positive, and cytokeratin 19 negative. In vitro limbal cells maintain a constant epithelial transition immunophenotype in culture up to primary culture until expanded cells on RHA.


Gamma radiation Cornea Radiosterilized human amnion Limbal stem cells 


  1. Augello A, Kurth TB, De Bari C (2010) Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater 1(20):121–133Google Scholar
  2. Brown E, Hooper L, Ho T, Gresham H (1990) Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 111(6):2785–2794PubMedCrossRefGoogle Scholar
  3. Castro-Muñozledo F (2008) Corneal epithelial cell cultures as a tool for research, drug screening and testing. Exp Eye Res 86(3):459–469 (Epub 2007 Dec 5)PubMedCrossRefGoogle Scholar
  4. Choi TH, Tseng SC (2001) In vivo and in vitro demonstration of epithelial cell-induced myofibroblast differentiation of keratocytes and an inhibitory effect by amniotic membrane. Cornea 20(2):197–204PubMedCrossRefGoogle Scholar
  5. de Roth A (1940) Plastic repair of conjunctival defects with fetal membrane. Arch Ophthalmol 23:522–525CrossRefGoogle Scholar
  6. de Vries P, Brasel KA, Eisenman JR, Alpert AR, Williams DE (1991) The effect of recombinant mast cell growth factor on purified murine hematopoietic stem cells. J Exp Med 173:1205–1211PubMedCrossRefGoogle Scholar
  7. Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49(1):51PubMedCrossRefGoogle Scholar
  8. Gresham HD, Goodwin JL, Allen PM, Anderson DC, Brown EJ (1989) A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol 108(5):1935–1943PubMedCrossRefGoogle Scholar
  9. Kim JS, Kim JC, Na BK, Jeong JM, Song CY (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70:329–337PubMedCrossRefGoogle Scholar
  10. Kim H-S, Jun Song X, de Pavia CS, Chen Z, Pflugfelder SC, Li D-Q (2004) Phenotypic characterization of human corneal ephitelial cells expanded ex vivo from limbal explants and single cell cultures. Exp Eye Res 79:41–49PubMedCrossRefGoogle Scholar
  11. Kinoshita S (2002) Ocular surface reconstruction by tissue engineering. J Jap Ophthalmol Soc 106:837–869Google Scholar
  12. Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001) Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol 119(2):298–300PubMedGoogle Scholar
  13. Lavker RM, Tseng SC, Sun TT (2004) Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res 78(3):433–446PubMedCrossRefGoogle Scholar
  14. Li W, Hayashida Y, Chen Y-T, Tseng SCG (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17:26–36PubMedCrossRefGoogle Scholar
  15. Lindstrom RL, Kaufman HE, Skelnik DL, Laing RA, Lass JH, Musch DC, Trousdale MD, Reinhart WJ, Burris TE, Sugar A, Davis RM, Hirokawa K, Smith T, Gordon JF (1992) Optisol corneal storage medium. Am J Ophthalmol 114(3):345–356PubMedGoogle Scholar
  16. Loken MR, Shah VO, Dattilio KL, Civin CI (1987) Flow cytometric analysis of human bone marrow. II. Normal B-lymphocyte development. Blood 70:1316–1324PubMedGoogle Scholar
  17. Lu L, Yang PY, Rui YCh, Kang H, Zhang J, Zhang JP, Feng WH (2007) Comparative proteome analysis of rat brain and coronary microvascular endothelial cells. Physiol Res 56:159–168PubMedGoogle Scholar
  18. Luna-Baca GA, Garfias Y, Robles-Contreras A, Jiménez-Martínez MC (2007) In vitro phenotypic characterization of human limbal epithelial cells. Gac Med Mex 143(3):183–187PubMedGoogle Scholar
  19. Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, Du Y, Li L (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24(2):315–321PubMedCrossRefGoogle Scholar
  20. Martínez-Pardo ME, Mariano-Magaña D (2007) The tissue bank at the Instituto Nacional de Investigaciones Nucleares: ISO 9001:2000 certification of its quality management system. Cell Tissue Bank 8(3):221–231PubMedCrossRefGoogle Scholar
  21. Martínez-Pardo ME, Reyes-Frías ML (2003) The tissue bank at the National Nuclear Research Institute in Mexico. Cell Tissue Bank 4:163–168CrossRefGoogle Scholar
  22. Means TL, Geroski DH, Hadley A, Lynn MJ, Edelhauser HF (1995) Viability of human corneal endothelium following Optisol-GS storage. Arch Ophthalmol 113(6):805–809PubMedCrossRefGoogle Scholar
  23. Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J, Hotta T, Ando K (2006) Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol 154:1062–1070PubMedCrossRefGoogle Scholar
  24. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349(9057):990–993PubMedCrossRefGoogle Scholar
  25. Pitz S, Moll R (2002) Intermediate-filament expression in ocular tissue. Prog Retin Eye Res 21(2):241–262PubMedCrossRefGoogle Scholar
  26. Polisetty N, Fatima A, Madhira SL, Sangwan VS, Vemuganti GK (2008) Mesenchymal cells from limbal stroma of human eye. Mol Vis 14:431–442PubMedGoogle Scholar
  27. Rubio D, Garcia S, De la Cueva T, Paz MF, Lloyd AC, Bernad A, Garcia-Castro J (2008) Human mesenchymal stem cell transformation is associated with a mesenchymal–epithelial transition. Exp Cell Res 314:691–698PubMedCrossRefGoogle Scholar
  28. Salazar-Gonzalez JF, Moody DJ, Giorgi JV, Martinez-Maza O, Mitsuyasu RT, Fahey JL (1985) Reduced ecto-5′-nucleotidase activity and enhanced OKT10 and HLA-DR. expression on CD8 (T suppressor/cytotoxic) lymphocytes in the acquired immune deficiency syndrome: evidence of CD8 cell immaturity. J Immunol 135(3):1778–1785PubMedGoogle Scholar
  29. Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81(3):247–264PubMedCrossRefGoogle Scholar
  30. Sorsby A, Symons HM (1946) Amniotic membrane grafts in caustic burns of the eye (burns of the second degree). Br J Ophthalmol 30:337–345CrossRefGoogle Scholar
  31. Sorsby A, Haythorne J, Reed H (1947) Further experience with amniotic membrane grafts in caustic burns of the eye. Br J Ophthalmol 31(7):409–418PubMedCrossRefGoogle Scholar
  32. Szaflik J, Liberek I, Brix M (2000) Corneal storage methods. Transplant Proc 32(6):1424–1425PubMedCrossRefGoogle Scholar
  33. Thomson LF, Ruedi JM, Glass A (1990) Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73). Tissue Antigens 35(1):9–19PubMedCrossRefGoogle Scholar
  34. Vasania VS, Prasad P, Gill RK, Mehta A, Viswanathan C, Sarang S, Majumdar AS (2011) Molecular and cellular characterization of expanded and cryopreserved human limbal epithelial stem cells reveal unique immunological properties. Exp Eye Res 92(1):47–56PubMedCrossRefGoogle Scholar
  35. Yarden Y, Kuang W-J, Yang-Feng T et al (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341–3351PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Carlos Landa-Solís
    • 1
  • Leticia Vázquez-Maya
    • 2
  • María Esther Martínez-Pardo
    • 3
  • Ana M. Brena-Molina
    • 1
  • Erika Ruvalcaba
    • 1
  • Ricardo Gómez
    • 1
  • Clemente Ibarra
    • 1
  • Cristina Velasquillo
    • 1
  1. 1.Instituto Nacional de RehabilitacionMexicoMexico
  2. 2.Hospital General de MéxicoMexicoMexico
  3. 3.Instituto Nacional de Investigaciones NuclearesMexicoMexico

Personalised recommendations