Cell and Tissue Banking

, Volume 14, Issue 1, pp 65–76

Comparison of vitrification and slow cooling for umbilical tissues

  • Lilian Da-Croce
  • Greicy Helen Ribeiro Gambarini-Paiva
  • Patrícia Caroline Angelo
  • Eduardo Alves Bambirra
  • Antônio Carlos Vieira Cabral
  • Ana Lúcia Brunialti Godard
Original Paper

Abstract

The tissue cryopreservation maintains the cellular metabolism in a quiescence state and makes the conservation possible for an indefinite period of time. The choice of an appropriate cryopreservation protocol is essential for maintenance of cryopreserved tissue banks. This study evaluated 10 samples of umbilical cord, from which small fragments of tissue (Wharton’s jelly and cord lining membrane) were subjected to two protocols of cryopreservation: slow cooling and vitrification. The samples were frozen for a period of time ranging from 5 to 78 days. The efficiency of cryopreservation was evaluated by testing cell viability, histological analysis, cell culture, cytogenetic analysis and comparison with the results of the fresh samples. The results showed that the slow cooling protocol was more efficient than the vitrification for cryopreservation of umbilical cord tissue, because it has caused fewer changes in the structure of tissue (edema and degeneration of the epithelium) and, despite the significant decrease cell viability compared to fresh samples, the ability of cell proliferation in vitro was preserved in most samples. In conclusion, this study showed that it is possible to cryopreserve small fragments of tissue from the umbilical cord and, to obtain viable cells capable of proliferation in vitro after thawing, contributing to the creation of a frozen tissue bank.

Keywords

Cryopreservation Vitrification Slow cooling Tissue Human umbilical cord 

References

  1. Agudelo CA, Iwata AH (2008) The development of alternative vitrification solutions for microencapsulated islets. Biomaterials 29:167–176CrossRefGoogle Scholar
  2. Al-Hasani S, Diedrich K, Van der Ven H et al (1987) Cryopreservation of human oocytes. Hum Reprod 2:695–700PubMedGoogle Scholar
  3. Benkhalifa MM, Janny L, Vye P, Malet P, Boucher D, Menezo Y et al (1993) Assessment of polyploidy in human morulae and blastocysts using co-culture and fluorescent in situ hybridization. Hum Reprod 8:895–902PubMedGoogle Scholar
  4. Bouquet M, Selva J, Aurox M (1992) The incidence of chromosomal abnormalities in frozen-thawed mouse oocytes after in vitro fertilization. Hum Reprod 7:76–80PubMedGoogle Scholar
  5. Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, Albertini DF (2009) Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod BioMed Online 19:29–34PubMedCrossRefGoogle Scholar
  6. Covas DT, Siufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 36:1179–1183PubMedCrossRefGoogle Scholar
  7. Curaba M, Poels J, van Langendonckt A, Donnez J, Wyns C (2011) Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil Steril 95(6):2123.e9–2123.e12Google Scholar
  8. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405–1410PubMedCrossRefGoogle Scholar
  9. Fahy GM, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35PubMedCrossRefGoogle Scholar
  10. Filho GB (2011) Bogliolo Patologia. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  11. Gaucher S, Elie C, Vérola O, Jarraya M (2011) Viability of cryopreserved human skin allografts: effects of transport media and cryoprotectant. Cell Tissue Bank. doi:10.1007/s10561-011-9239-3
  12. Glenister PH, Wood MJ, Kirby C, Whittingham DG (1987) Incidence of chromosome anomalies in first-cleavage mouse embryos obtained from frozen-thawed oocytes fertilized in vitro. Gamete Res 16:205–216PubMedCrossRefGoogle Scholar
  13. Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, Aoi N, Kato H, Sato K, Murase S, Koshima I, Yoshimura (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 121:401–410Google Scholar
  14. Gook DA, McCully BA, Edgar DH, McBain JC (2001) Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod 16:417–422PubMedCrossRefGoogle Scholar
  15. Goud A, Goud P, Qian C, Van der Elst J, Van Maele G, Dhont M (2000) Cryopreservation of human germinal vesicle stage and in vitro matured M II oocytes: influence of cryopreservation media on the survival, fertilization, and early cleavage divisions. Fertil Steril 74(3):487–494PubMedCrossRefGoogle Scholar
  16. Gouk SS, Loh YF, Kumar SD, Watson PF, Kuleshova LL (2011) Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil Steril 95(7):2399–2403PubMedCrossRefGoogle Scholar
  17. Gustashaw KM (1997) Chromosome stains. In: The AGT Cytogenetics Laboratory Manual, 3rd edn. Lippincott-Raven, New York, pp 259–324Google Scholar
  18. Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M, Böttger T, Oesch F (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118PubMedCrossRefGoogle Scholar
  19. Huang CC, Lee TH, Chen SU, Chen HH, Cheng TC, Liu CH, Yang YS, Lee MS (2005) Successful pregnancy following blastocyst cryopreservation using super-cooling ultra-rapid vitrification. Hum Reprod 20(1):122–128PubMedCrossRefGoogle Scholar
  20. Huang L, Mo Y, Wang W, Li Y, Zhang Q, Yang D (2008) Cryopreservation of human ovarian tissue by solid-surface vitrification. Eur J Obstet Gynecol Reprod Biol 139(2):193–198PubMedCrossRefGoogle Scholar
  21. Ieropoli S, Masullo P, Santo Mdo E, Sansone G (2004) Effects of extender composition, cooling rate and freezing on the fertilization viability of spermatozoa of the Pacific oyster (Crassostrea gigas). Cryobiology 49:250–257PubMedCrossRefGoogle Scholar
  22. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90:261–269PubMedCrossRefGoogle Scholar
  23. Karlsson JO, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256PubMedCrossRefGoogle Scholar
  24. Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T (1990) A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil 89:91–97PubMedCrossRefGoogle Scholar
  25. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, Hreinsson J, Hovatta (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683Google Scholar
  26. Kim GA, Kim HY, Kim JW, Lee G, Lee E, Ahn JY, Park JH, Lim JM (2011) Effectiveness of slow freezing and vitrification for long-term preservation of mouse ovarian tissue. Theriogenology 75:1045–1051PubMedCrossRefGoogle Scholar
  27. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 9(4):491–502CrossRefGoogle Scholar
  28. Kuhnel W (2005) Citologia, Histologia e Anatomia microscópica. Artmed, Porto AlegreGoogle Scholar
  29. Kuleshova LL, Lopata AMB (2002) Vitrification can be more favorable than slow cooling. Fertil Steril 78(3):449–454PubMedCrossRefGoogle Scholar
  30. Kuleshova LL, Gouka SS, Hutmacher DW (2007) Vitrication as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials 28:1585–1596PubMedCrossRefGoogle Scholar
  31. Kvist K, Thorup J, Byskov AG, Høyer PE, Mollgard K, Yding Andersen C (2006) Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum Reprod 21(2):484–491PubMedCrossRefGoogle Scholar
  32. Lehle K, Hoenicka M, Jacobs VR, Schmid FX, Birnbaum DE (2005) Cryopreservation of human endothelial cells for vascular tissue engineering. Cryobiology 50:154–161PubMedCrossRefGoogle Scholar
  33. Luciano AM, Chigioni S, Lodde V, Franciosi F, Luvoni GC, Modina SC (2009) Effect of different cryopreservation protocols on cytoskeleton and gap junction mediated communication integrity in feline germinal vesicle stage oocytes. Cryobiology 59:90–95PubMedCrossRefGoogle Scholar
  34. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physio 247:125–142Google Scholar
  35. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, Schiff E, Dor J (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353(3):318–321PubMedCrossRefGoogle Scholar
  36. Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945PubMedCrossRefGoogle Scholar
  37. Meryman HT, Kafig E (1955) Rapid freezing and thawing of whole blood. Proc Soc Exp Biol Med 90(3):587–589PubMedGoogle Scholar
  38. Metze K (2004) Patologia Geral, 3 edn. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  39. Miyamoto Y, Suzuki S, Nomura K, Enosawa S (2006) Improvement of hepatocyte viability after cryopreservation by supplementation of long-chain oligosaccharide in the freezing medium in rats and humans. Cell Transpl 15:911–919CrossRefGoogle Scholar
  40. Murua A, Orive G, Hernández RM, Pedraz JL (2009) Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30:3495–3501PubMedCrossRefGoogle Scholar
  41. Naro E, Ghezzi F, Raio L, Franchi M, D’Addario V (2001) Umbilical cord morphology and pregnancy outcome. Eur J Obstet Reprod Biol 96:150–157CrossRefGoogle Scholar
  42. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R (1996) Low temperature storage and grafting of human ovarian tissue. Hum Reprod 11:1487–1491PubMedCrossRefGoogle Scholar
  43. Notman R, Noro M, O’Malley B, Anwar J (2006) Molecular basis for Dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128:13982–13983PubMedCrossRefGoogle Scholar
  44. Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, Opsahl M, Rosenwaks Z (2004) Embryo development after heterotopic transplantation ovarian tissue. Lancet 363:837–840PubMedCrossRefGoogle Scholar
  45. Oskam I, Lund T, Santos R (2011) Irreversible damage in ovine ovarian tissue after cryopreservation in propanediol: analyses after in vitro culture and xenotransplantation. Reprod Dom Anim. doi:10.1111/j.1439-0531.2010.01743.x
  46. Rowe AW (1996) Cryopreservation in blood banking—frozen blood for transfusion preservation of blood by the low glycerol-rapid freeze process. Vox Sang 70(3):50–56CrossRefGoogle Scholar
  47. Salvetti P, Buff S, Afanassieff M, Daniel N, Guérin P, Joly T (2010) Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing. Theriogenology 74:847–855PubMedCrossRefGoogle Scholar
  48. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229PubMedCrossRefGoogle Scholar
  49. Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150PubMedCrossRefGoogle Scholar
  50. Son JH, Kim KH, Nam YK, Park JK, Kim SK (2004) Optimization of cryoprotectants for cryopreservation of rat hepatocyte. Biotechnol Lett 26:829–833PubMedCrossRefGoogle Scholar
  51. Song YC, An YH, Kang QK, Li C, Boggs JM, Chen Z, Taylor MJ, Brockbank KGM (2004) Vitreous preservation of articular cartilage grafts. J Invest Surg 17:65–70PubMedCrossRefGoogle Scholar
  52. Succu S, Leoni GG, Berlinguer F, Madeddu M, Bebbere D, Mossa F, Bogliolo L, Ledda S, Naitana S (2007) Effect of vitrification solutions and cooling upon in vitro matured prepubertal ovine oocytes. Theriogenology 68:107–114PubMedCrossRefGoogle Scholar
  53. Succu S, Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Berlinguer F, Naitana S, Ledda S (2008) Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol Reprod Dev 75:538–546PubMedCrossRefGoogle Scholar
  54. Takahashi T, Hirsh A, Erbe E, Williams RJ (1988) Mechanism of cryoprotection by extracellular polymeric solutes. Biophys J 54:509–518PubMedCrossRefGoogle Scholar
  55. Thomaz BAC, Biondo-Simões MLP, Almodin CG, Minguetti-Camara VC, Ceschin AP, Ioshii SO (2005) Aspectos histológicos do ovário de coelhas após criopreservação. Rev Bras Ginecol Obstet 27(11):642–649CrossRefGoogle Scholar
  56. Valeri CR, Ragno G, Pivacek LE, Cassidy GP, Srey R, Hansson-Wicher M, Leavy ME (2000) An experiment with glycerol-frozen red blood cells stored at 80 degrees for up to 37 years. Vox Sang 79:168–174PubMedCrossRefGoogle Scholar
  57. Wang X, Hua TC, Sun DW, Liu B, Yang G, Cao Y (2007) Cryopreservation of tissue-engineered dermal replacement in Me2SO: toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology 55:60–65PubMedCrossRefGoogle Scholar
  58. Weiss ML, Troyer D (2006) Stem cells in the umbilical cord. Stem Cell Rev 2:155–1663PubMedCrossRefGoogle Scholar
  59. Yokota Y, Sato S, Yokota M, Ishikawa Y, Makita M, Asada T, Araki Y (2000) Successful pregnancy following blastocyst vitrification. Hum Reprod 15(8):1802–1803PubMedCrossRefGoogle Scholar
  60. Yu HB, Shen GF, Wei FC (2007) Effect of cryopreservation on the immunogenicity of osteoblasts. Transpl Proc 39:3030–3031CrossRefGoogle Scholar
  61. Yu-Bin L, Zhou CQ, Yang GF, Wang Q, Dong Y (2007) Modified vitrification method for cryopreservation of human ovarian tissues. Chin Med J 120:110–114Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lilian Da-Croce
    • 1
    • 2
  • Greicy Helen Ribeiro Gambarini-Paiva
    • 2
  • Patrícia Caroline Angelo
    • 2
  • Eduardo Alves Bambirra
    • 3
    • 4
  • Antônio Carlos Vieira Cabral
    • 5
  • Ana Lúcia Brunialti Godard
    • 1
  1. 1.Laboratory of Animal and Human Genetics, Department of General BiologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Sector of Cytogenetics, Department of GeneticsHermes Pardini InstituteBelo HorizonteBrazil
  3. 3.Department of Pathological Anatomy and Legal Medicine, Faculty of MedicineUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Pathological AnatomyHermes Pardini InstituteBelo HorizonteBrazil
  5. 5.Department of Ginecology and Obstetrics, Faculty of MedicineUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations