Advertisement

Cell and Tissue Banking

, Volume 12, Issue 2, pp 81–88 | Cite as

BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation

  • William S. PietrzakEmail author
  • Saba N. Ali
  • Deepika Chitturi
  • Mahima Jacob
  • Jennifer E. Woodell-May
Article

Abstract

Demineralization of allograft bone increases the bioavailability of matrix-associated bone morphogenetic proteins (BMPs), rendering these grafts osteoinductive. While osteoinductivity is related to BMP content, little is known about how the demineralization protocol, in particular, extended demineralization times, affects graft BMP levels. We characterized the BMP-7 content of <710 μm bovine bone powder demineralized under various conditions. Using 1 g of bone per 50 ml of 0.125 N, 0.25 N, or 0.5 N HCl, demineralization was performed at room temperature for 5 min to 24 h. Minimum residual calcium levels were obtained within 90 min and were <1 wt % using the 0.25 N and 0.5 N baths and 17 wt % using the 0.125 N bath. Measured peak BMP-7 levels were also obtained within 90 min and were 161–165 ng g−1 using the 0.25 N and 0.5 N baths and 55.2 ng g−1 using the 0.125 N bath. This compares to 5.1 ng g−1 for undemineralized bone. Further acid bath exposure to 24 h resulted in BMP-7 decline to about 50% of the peak value, which was significant. The BMP-7 half-life was estimated to be 26 h. It is likely that the decline was due to diffusion of BMP-7 from the bone matrix into the acid. These results suggest the importance of not over demineralizing bone grafts and should stimulate further research that can be incorporated into the processing methodology followed by tissue banks.

Keywords

Demineralized bone matrix DBM Demineralization Bone morphogenetic protein BMP BMP-7 

References

  1. Adkisson HD, Strauss-Schoenberger J, Gillis M, Wilkins R, Jackson M, Hruska KA (2000) Rapid quantitative bioassay of osteoinduction. J Orthop Res 18:503–511. doi: 10.1002/jor.1100180326 PubMedCrossRefGoogle Scholar
  2. Bauer TW, Muschler GF (2000) Bone graft materials. An overview of basic science. Clin Orthop Rel Res 371:10–27CrossRefGoogle Scholar
  3. Blum B, Moseley J, Miller L, Richelsoph K, Haggard W (2004) Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics 27(1 Suppl):S161–S165PubMedGoogle Scholar
  4. Chao MT, Jiang S, Smith D, DeCesare GE, Cooper GM, Pollack IF, Girotto J, Losee JE (2009) Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method for reconstruction of large-scale defects in the pediatric calvaria. Plast Reconstr Surg 123:976–982. doi: 10.1097/PRS.0b013e31819ba46f PubMedCrossRefGoogle Scholar
  5. Etienne G, Ragland PS, Mont MA (2004) Use of cancellous bone chips and demineralized bone matrix in the treatment of acetabular osteolysis: preliminary 2-year follow-up. Orthopedics 27(1 Suppl):s123–s126PubMedGoogle Scholar
  6. Gardner MJ, Toro-Arbelaez JB, Harrison M, Hierholzer C, Lorich DG, Helfet DL (2008) Open reduction and internal fixation of distal femoral nonunions: long-term functional outcomes following a treatment protocol. J Trauma 64:434–438. doi: 10.1097/01.ta.0000245974.46709.2e PubMedCrossRefGoogle Scholar
  7. Gendler E (1986) Perforated demineralized bone matrix: a new form of osteoinductive material. J Biomed Mater Res 20:687–697. doi: 10.1002/jbm.820200603 PubMedCrossRefGoogle Scholar
  8. Han B, Yang Z, Nimni M (2008) Effect of gamma irradiation on osteoinduction associated with demineralized bone matrix. J Orthop Res 26:75–82. doi: 10.1002/jor.20478 PubMedCrossRefGoogle Scholar
  9. Harakas NK (1984) Demineralized bone-matrix-induced osteogenesis. Clin Orthop Rel Res 188:239–250Google Scholar
  10. Honsawek S, Powers RM, Wolfinbarger L (2005) Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank 6:13–23. doi: 10.1007/s10561-005-1445-4 PubMedCrossRefGoogle Scholar
  11. Jazayeri MA, Nichter LS, Zhou ZY, Wellisz T, Cheung DT (1994) Comparison of various delivery systems for demineralized bone matrix in a rat cranial defect model. J Craniofac Surg 5:172–178PubMedCrossRefGoogle Scholar
  12. Ladd AL, Pliam NB (1999) Use of bone-graft substitutes in distal radius fractures. J Am Acad Orthop Surg 7:279–290PubMedGoogle Scholar
  13. Landesman R, Reddi AH (1989) In vivo analysis of the half-life of the osteoinductive potential of demineralized bone matrix using diffusion chambers. Calcif Tissue Int 45:348–353PubMedCrossRefGoogle Scholar
  14. Manchio JV, Omulepu OO, Weinzweig J (2009) Treatment of benign bone tumors of the hand using demineralized bone matrix. Plast Reconstr Surg 123:214e–216e. doi: 10.1097/PRS.0b013e3181a3f62f PubMedCrossRefGoogle Scholar
  15. Marino AA, Becker RO (1968) Mechanically induced free radicals in bone. Nature 218:466–467PubMedCrossRefGoogle Scholar
  16. Marks T, Wingerter S, Franklin L, Woodall J Jr, Tucci M, Russell G, Patel R, Benghuzzi H (2007) Histological and radiographic comparison of allograft substitutes using a continuous delivery model in segmental defects. Biomed Sci Instrum 43:194–199Google Scholar
  17. Mizutani H, Urist MR (1982) The nature of bone morphogenetic protein (BMP) fractions derived from bovine bone matrix gelatin. Clin Orthop Rel Res 171:213–223Google Scholar
  18. Murray SS, Brochmann EJ, Harker JO, King E, Lollis RJ, Khaliq SA (2007) A statistical model to allow the phasing out of the animal testing of demineralized bone matrix products. Altern Lab Anim 35:405–409PubMedGoogle Scholar
  19. Neigel JM, Ruzicka PO (1996) Use of demineralized bone implants in orbital and craniofacial reconstruction and a review of the literature. Ophthal Plast Reconstr Surg 12:108–120PubMedCrossRefGoogle Scholar
  20. Nilsson OS, Persson P-K, Ekelund A (1990) Heterotopic new bone formation causes resorption of the inductive bone matrix. Clin Orthop Rel Res 257:280–285Google Scholar
  21. Pacaccio DJ, Stern SF (2005) Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 22:599–606. doi: 10.1016/j.cpm.2005.07.001 PubMedCrossRefGoogle Scholar
  22. Pietrzak WS (2006) The hydration characteristics of demineralized and nondemineralized allograft bone: scientific perspectives on graft function. J Craniofac Surg 17:120–130. doi: 10.1097/01.scs.0000200413.68324.61 PubMedCrossRefGoogle Scholar
  23. Pietrzak WS, Woodell-May J (2005) The composition of human cortical allograft bone derived from FDA/AATB-screened donors. J Craniofac Surg 16:579–585PubMedCrossRefGoogle Scholar
  24. Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM (2005) Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg 44:345–353. doi: 10.1053/j.jfas.2005.07.006 PubMedCrossRefGoogle Scholar
  25. Pietrzak WS, Woodell-May J, McDonald N (2006) Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg 17:84–90. doi: 10.1097/01.scs.0000179745.91165.73 PubMedCrossRefGoogle Scholar
  26. Reddi AH (2001) Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg 83A(Suppl 1):S1–S6Google Scholar
  27. Reddi AH, Huggins C (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Nat Acad Sci USA 69:1601–1605PubMedCrossRefGoogle Scholar
  28. Sampath TK, Reddi AH (1984) Distribution of bone inductive proteins in mineralized and demineralized extracellular matrix. Biochem Biophys Res Commun 119:949–954PubMedCrossRefGoogle Scholar
  29. Scarborough NL, White EM, Hughes JV, Manrique AJ, Poser JW (1995) Allograft safety: viral inactivation with bone demineralization. Contemp Orthop 31:257–261PubMedGoogle Scholar
  30. Shigeyama Y, D’Errico JA, Stone R, Somerman MJ (1995) Commercially-prepared allograft material has biological activity in vitro. J Peridontol 66:478–487Google Scholar
  31. Sung AD, Anderson ME, Zurakowski D, Hornicek FJ, Gebhardt MC (2008) Unicameral bone cyst: a retrospective study of three surgical treatments. Clin Orthop Relat Res 466:2519–2526. doi: 10.1007/s11999-008-0407-0 PubMedCrossRefGoogle Scholar
  32. Swenson CL, Arnoczky SP (2003) Demineralization for inactivation of infectious retrovirus in systematically infected cortical bone. In vitro and in vivo experimental studies. J Bone Joint Surg 85-A:323–332PubMedGoogle Scholar
  33. Syftestad G, Urist MR (1979) Degradation of bone matrix morphogenetic activity by pulverization. Clin Orthop Rel Res 141:281–285Google Scholar
  34. Topuz K, Colak A, Kaya S, Simşek H, Kutlay M, Demircan MN, Velioğlu M (2009) Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J 18:238–243. doi: 10.1007/s00586-008-0869-5 PubMedCrossRefGoogle Scholar
  35. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899PubMedCrossRefGoogle Scholar
  36. Urist MR (1972) Osteoinduction in undemineralized bone implants modified by chemical inhibitors of endogenous matrix enzymes. A preliminary report. Clin Orthop Rel Res 87:132–137Google Scholar
  37. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(Suppl 6):1392–1406PubMedGoogle Scholar
  38. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Rel Res 53:243–283Google Scholar
  39. Urist MR, Dowell TA, Hay PH, Strates BS (1968) Inductive substrates for bone formation. Clin Orthop Rel Res 59:59–96Google Scholar
  40. Urist MR, Iwata H, Boyd SD, Ceccotti PL (1974) Observations implicating an extracellular enzyme mechanism of control of bone morphogenesis. J Histochem Cytochem 22:88–103PubMedCrossRefGoogle Scholar
  41. Urist MR, Granstein R, Nogami H, Svenson L, Murphy R (1977) Transmembrane bone morphogenesis across multiple-walled diffusion chambers: new evidence for a diffusible bone morphogenetic property. Arch Surg 112:612–619PubMedGoogle Scholar
  42. Winn SR, Uludag H, Hollinger JO (1999) Carrier systems for bone morphogenetic proteins. Clin Orthop Rel Res 367S:S95–S106Google Scholar
  43. Yazdi M, Bernick S, Paule WJ, Nimni ME (1991) Postmortem degradation of demineralized bone matrix osteoinductive potential. Effect of storage time and temperature. Clin Orthop Rel Res 262:281–285Google Scholar
  44. Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997) Effects(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Peridontol 68:1085–1091Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • William S. Pietrzak
    • 1
    • 2
    Email author
  • Saba N. Ali
    • 2
  • Deepika Chitturi
    • 2
  • Mahima Jacob
    • 2
  • Jennifer E. Woodell-May
    • 1
  1. 1.Biomet, Inc.WarsawUSA
  2. 2.University of Illinois at ChicagoChicagoUSA

Personalised recommendations