Cell and Tissue Banking

, Volume 12, Issue 1, pp 59–70

Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells

  • Sik-Loo Tan
  • Sofiah Sulaiman
  • Belinda Pingguan-Murphy
  • L. Selvaratnam
  • Cheh-Chin Tai
  • T. Kamarul
Article
  • 230 Downloads

Abstract

This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.

Keywords

Cell delivery vehicle Chondrogenic differentiation Human amnion Mesenchymal stem cells 

References

  1. Barry F, Boynton RE, Liu B et al (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200PubMedCrossRefGoogle Scholar
  2. Both SK, Van Der Muijsenberg AJC, Van Blitterswijk CA et al (2007) A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng 13(1):3–9PubMedCrossRefGoogle Scholar
  3. Calvin SE, Oyen ML (2007) Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann N Y Acad Sci 1101:166–185PubMedCrossRefGoogle Scholar
  4. Chong PP, Kamarul T, Jalil K et al (2008) Processing and bioburden analysis of human amniotic membrane for biological and tissue engineering application—a preliminary report. J Asian Orthop Assoc 19(1):28–34Google Scholar
  5. Cohen M, Kam Z, Addadi L et al (2006) Dynamic study of the transition from hyaluronan—to intergrin-mediated adhession in chondrocytes. EMBO 25:302–311CrossRefGoogle Scholar
  6. Darling EM, Athanasiou KA (2006) Rapid phenotypic changes in passaged articular chondrocyte populations. J Othop Res 23(2):425–432CrossRefGoogle Scholar
  7. Davis JW (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins hospital. Johns Hopkins Med J 15:307Google Scholar
  8. Facchini A, Lisignoli G, Cristino S et al (2006) Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology 43:471–480PubMedGoogle Scholar
  9. Farazdaghi M, Adler J, Farazdaghi SM (2001) Electron microscopy of human amniotic membrane. Adv Tissue Bank 5:149–169Google Scholar
  10. Gal P, Necas A, Planka L et al (2007) Chondrocytic potential of allogenic mesenchymal stem cells transplanted without immunosuppression to regenerate physeal defect in rabbits. Acta Vet Brno 76:265–275CrossRefGoogle Scholar
  11. Hangody L, Vasarhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting-technique and long-term results. Injury 39(S1):S32–S39PubMedCrossRefGoogle Scholar
  12. Hegewald AA, Ringe J, Bartel J et al (2004) Hyaluronic acid and autologous synovial fluid induce chondrogenic differetniation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:421–438CrossRefGoogle Scholar
  13. Higa K, Shimmura S, Shimazaki J et al (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24(2):206–212PubMedCrossRefGoogle Scholar
  14. Jin CZ, Park SR, Choi BH et al (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13(4):693–702PubMedCrossRefGoogle Scholar
  15. Kjaergaard N, Hein M, Hyttel L et al (2001) Antibacterial properties of human amnion and chorion in vitro. Eur J Obstet Gynecol Reprod Biol 94:224–229PubMedCrossRefGoogle Scholar
  16. Knudson W, Aguiar DJ, Hua Q et al (1996) CD44-anchored hyaluronan-rich pericellular matrices: an ultracellular and biochemical analysis. Exp Cell Res 228:216–228PubMedCrossRefGoogle Scholar
  17. Kumar TR, Shanmugasundaram N, Babu M (2003) Biocompatible collagen scaffolds from a human amniotic membrane: physiochemical and in vitro culture characteristics. J Biomater Sci 14:689–706CrossRefGoogle Scholar
  18. Lee EH, Hui JHP (2006) The potential of stem cells in orthopaedic surgery. J Bone Joint Surg Br 88B(2):841–851Google Scholar
  19. Lee S-H, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359PubMedCrossRefGoogle Scholar
  20. Lymann DJ, Seare WJ (1974) Biomedical materials in surgery. Annu Rev Mater Sci 4:415–433CrossRefGoogle Scholar
  21. Malak TM, Ockleford CD, Bell SC et al (1993) Confocal immunofluorescence localization of collagen type I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14:385–406PubMedCrossRefGoogle Scholar
  22. Marlovits S, Zeller P, Singer P et al (2006) Cartilage repair: generation of autologous chondrocyte transplantation. Eur J Radiol 57:24–31PubMedCrossRefGoogle Scholar
  23. Meinert M, Eriksen GV, Petersen AC et al (2001) Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 184:679–685PubMedCrossRefGoogle Scholar
  24. Mithoefer K, Williams RJ, Warren RF et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Br 87A(9):1911–1920CrossRefGoogle Scholar
  25. Mohamad H (2001) Anatomy and embryology of human placenta, amnion and chorion. Adv Tissue Bank 5:139–148Google Scholar
  26. Murdoch AD, Dodge GR, Cohen I et al (1992) Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem 267:8544–8557PubMedGoogle Scholar
  27. Nakamura T, Yoshitani M, Rigby H et al (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci 45(1):93–99PubMedCrossRefGoogle Scholar
  28. Niknejad H, Peirovi H, Jorjani M et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99PubMedGoogle Scholar
  29. Norimah Y, Asnah H, Firdaus MN et al (2006) Challenges in validating the sterilization dose for processed human amniotic membranes. Rad Phys Chem 76(11–12):1756–1759Google Scholar
  30. Parry S, Straus JF (1998) Premature rupture of the fetal membranes. N Eng J Med 338:663–670CrossRefGoogle Scholar
  31. Peterson L, Brittberg M, Kiviranta I et al (2002) Autologous chondrocyte transplantation. Am J Sports Med 30:2–12PubMedGoogle Scholar
  32. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Sci 284(5411):143–147CrossRefGoogle Scholar
  33. Quinby WC Jr, Hoover HC, Scheflan M et al (1982) Clinical trials of amniotic membranes in burn wound care. Plast Reconstr Surg 70:711–716PubMedCrossRefGoogle Scholar
  34. Schrader S, Wedel T, Kremling C et al (2007) Amniotic membrane as a carrier for lacrimal gland acrinar cells. Graefes Arch Clin Exp Ophthalmol 245(11):1699–1704PubMedCrossRefGoogle Scholar
  35. Singh R, Purohit S, Chacharkar MP (2007) Effect of high doses of gamma radiation on the functional characteristics of amniotic membrane. Rad Phys Chem 76:1026–1030CrossRefGoogle Scholar
  36. Steinwachs MR, Th Guggi, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(S1):S26–S31PubMedCrossRefGoogle Scholar
  37. Subramanyam M (1995) Amniotic membrane as a cover for microskin grafts. Br J Plast Surg 48:477–478CrossRefGoogle Scholar
  38. Wakitani S, Kimura T, Hirooka A et al (1989) Repair of rabbit articulat surface with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg (Br) 71-B:74–80Google Scholar
  39. Ward DJ, Bennett JP, Burgos H et al (1989) The healing of chronic venous leg ulcers with prepared human amnion. Br J Plast Surg 42:463–467PubMedCrossRefGoogle Scholar
  40. Wilshaw SP, Kearney JN, Fisher J et al (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12(8):2117–2129PubMedCrossRefGoogle Scholar
  41. Wilshaw S-P, Kearney J, Fisher J et al (2008) Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogenic cells. Tissue Eng 14(4):463–472CrossRefGoogle Scholar
  42. Yang X, Moldovan NI, Zhao Q et al (2008) Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis 5(14):1064–1070Google Scholar
  43. Zhu H, Mitsuhashi N, Klein A et al (2006) The role of hyaluronan receptor CD44 in mesenchymal stem cells migration in the extracellular matrix. Stem Cells 24:928–935PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sik-Loo Tan
    • 1
  • Sofiah Sulaiman
    • 2
  • Belinda Pingguan-Murphy
    • 3
  • L. Selvaratnam
    • 4
  • Cheh-Chin Tai
    • 1
  • T. Kamarul
    • 1
  1. 1.Department of Orthopaedic Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Obstetric and Gynaecology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Biomedical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  4. 4.School of Medicine and Health SciencesMonash UniversitySubang JayaMalaysia

Personalised recommendations