Cell and Tissue Banking

, Volume 10, Issue 4, pp 333–340 | Cite as

Storage conditions do not have detrimental effect on allograft collagen or scaffold performance

Article

Abstract

Musculoskeletal allografts are a valuable alternative to autograft tissue in orthopaedic surgeries. However, the effects of the allografts’ storage history on the collagen and subsequent allograft scaffold properties are unknown. In this study, we hypothesized that freezing and refrigeration of allografts for 1 week would alter the biologic performance and mechanical properties of the allograft collagen. Allograft collagen was characterized by SDS–PAGE migration pattern, amino acid profile and measured denaturation. Scaffolds made from allograft collagen were evaluated for fibroblast proliferation, platelet activation and scaffold retraction. Collagen gelation kinetics (elastic and inelastic moduli and the viscous-elastic transition point) were also evaluated. Fibroblast proliferation, platelet activation and scaffold retraction results showed only minor, though statistically significant, differences between the storage groups. In addition, there were no significant differences in rheological properties or collagen biochemistry. In conclusion, this study suggests that freezing or refrigeration for 1 week does not appear to have any detrimental effect on the mechanical properties and biologic performance of the collagen within allografts.

Keywords

Allograft Storage Collagen Scaffold 

Notes

Acknowledgments

This work was supported by a grant from the Musculoskeletal Transplant Foundation. The authors thank Marie Torres (amino acid analysis), Yin Yin Lin and Zachary Waldon (SDS–PAGE), and the help of Dr. David Zurakowski with the statistical analyzes.

References

  1. Bashey RI, Bashey HM et al (1978) Characterization of pepsin-solubilized bovine heart-valve collagen. Biochem J 173(3):885–894PubMedGoogle Scholar
  2. Batge B, Winter C et al (1997) Glycosylation of human bone collagen I in relation to lysylhydroxylation and fibril diameter. J Biochem 122(1):109–115PubMedGoogle Scholar
  3. Brighton CT, Shadle CA et al (1979) Articular cartilage preservation and storage. I. Application of tissue culture techniques to the storage of viable articular cartilage. Arthritis Rheum 22(10):1093–1101. doi:10.1002/art.1780221008 PubMedCrossRefGoogle Scholar
  4. Caldwell PE 3rd, Shelton WR (2005) Indications for allografts. Orthop Clin North Am 36(4):459–467. doi:10.1016/j.ocl.2005.05.008 PubMedCrossRefGoogle Scholar
  5. Chandrakasan G, Torchia DA et al (1976) Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution. J Biol Chem 251(19):6062–6067PubMedGoogle Scholar
  6. Christiansen VJ, Jackson KW et al (2007) Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys 457(2):177–186. doi:10.1016/j.abb.2006.11.006 PubMedCrossRefGoogle Scholar
  7. Cohen SB, Sekiya JK (2007) Allograft safety in anterior cruciate ligament reconstruction. Clin Sports Med 26(4):597–605. doi:10.1016/j.csm.2007.06.003 PubMedCrossRefGoogle Scholar
  8. Djabourov M, Lechaire JP et al (1993) Structure and rheology of gelatin and collagen gels. Biorheology 30(3–4):191–205PubMedGoogle Scholar
  9. Eastoe JE (1967) Composition of collagen and allied proteins. Academic Press, LondonGoogle Scholar
  10. Giannini S, Buda R et al (2008) Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int Orthop 32(2):145–151. doi:10.1007/s00264-006-0297-2 PubMedCrossRefGoogle Scholar
  11. Kafienah W, Buttle DJ et al (1998) Cleavage of native type I collagen by human neutrophil elastase. Biochem J 330(Pt 2):897–902PubMedGoogle Scholar
  12. Kotch FW, Guzei IA et al (2008) Stabilization of the collagen triple helix by O-methylation of hydroxyproline residues. J Am Chem Soc 130(10):2952–2953. doi:10.1021/ja800225k PubMedCrossRefGoogle Scholar
  13. Li YY, Feng YQ et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97(23):12746–12751. doi:10.1073/pnas.97.23.12746 PubMedCrossRefGoogle Scholar
  14. Lightfoot A, Martin J et al (2007) Fluorescent viability stains overestimate chondrocyte viability in osteoarticular allografts. Am J Sports Med 35(11):1817–1823. doi:10.1177/0363546507305010 PubMedCrossRefGoogle Scholar
  15. Malinin T, Temple HT et al (2006) Transplantation of osteochondral allografts after cold storage. J Bone Joint Surg Am 88(4):762–770. doi:10.2106/JBJS.D.02991 PubMedCrossRefGoogle Scholar
  16. Oates KM, Chen AC et al (1995) Effect of tissue culture storage on the in vivo survival of canine osteochondral allografts. J Orthop Res 13(4):562–569. doi:10.1002/jor.1100130411 PubMedCrossRefGoogle Scholar
  17. Pennock AT, Wagner F et al (2006) Prolonged storage of osteochondral allografts: does the addition of fetal bovine serum improve chondrocyte viability? J Knee Surg 19(4):265–272PubMedGoogle Scholar
  18. Rohde RS, Studer RK et al (2004) Mini-pig fresh osteochondral allografts deteriorate after 1 week of cold storage. Clin Orthop Relat Res 427:226–233. doi:10.1097/01.blo.0000138955.27186.8e PubMedCrossRefGoogle Scholar
  19. Sammarco VJ, Gorab R et al (1997) Human articular cartilage storage in cell culture medium: guidelines for storage of fresh osteochondral allografts. Orthopedics 20(6):497–500PubMedGoogle Scholar
  20. Samuel CS, Coghlan JP et al (1998) Effects of relaxin, pregnancy and parturition on collagen metabolism in the rat pubic symphysis. J Endocrinol 159(1):117–125. doi:10.1677/joe.0.1590117 PubMedCrossRefGoogle Scholar
  21. Schachar NS, Cucheran DJ et al (1994) Metabolic activity of bovine articular cartilage during refrigerated storage. J Orthop Res 12(1):15–20. doi:10.1002/jor.1100120103 PubMedCrossRefGoogle Scholar
  22. Smith CW, Young IS et al (1996) Mechanical properties of tendons: changes with sterilization and preservation. J Biomech Eng 118(1):56–61. doi:10.1115/1.2795946 PubMedCrossRefGoogle Scholar
  23. Traub W, Piez KA (1971) The chemistry and structure of collagen. Adv Protein Chem 25:243–352. doi:10.1016/S0065-3233(08)60281-8 PubMedCrossRefGoogle Scholar
  24. Vassbotn FS, Havnen OK et al (1994) Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor. J Biol Chem 269(19):13874–13879PubMedGoogle Scholar
  25. Viidik A, Lewin T (1966) Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. Acta Orthop Scand 37(2):141–155PubMedCrossRefGoogle Scholar
  26. Vitagliano L, Berisio R et al (2001) Structural bases of collagen stabilization induced by proline hydroxylation. Biopolymers 58(5):459–464. doi:10.1002/1097-0282(20010415)58:5<459::AID-BIP1021>3.0.CO;2-V PubMedCrossRefGoogle Scholar
  27. Williams SK, Amiel D et al (2003) Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am 85-A(11):2111–2120PubMedGoogle Scholar
  28. Williams JM, Virdi AS et al (2005) Prolonged-fresh preservation of intact whole canine femoral condyles for the potential use as osteochondral allografts. J Orthop Res 23(4):831–837. doi:10.1016/j.orthres.2004.07.007 PubMedCrossRefGoogle Scholar
  29. Williams RJ 3rd, Ranawat AS et al (2007) Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 89(4):718–726. doi:10.2106/JBJS.F.00625 PubMedCrossRefGoogle Scholar
  30. Woo SL, Orlando CA et al (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404. doi:10.1016/0021-9290(86)90016-3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryChildren’s Hospital of BostonBostonUSA

Personalised recommendations