Cell and Tissue Banking

, Volume 8, Issue 1, pp 43–57 | Cite as

Functional properties of fresh and cryopreserved carotid and femoral arteries, and of venous and synthetic grafts: comparison with arteries from normotensive and hypertensive patients

  • Daniel Bia Santana
  • Ricardo L. Armentano
  • Yanina Zócalo
  • Héctor Pérez Cámpos
  • Edmundo I. Cabrera Fischer
  • Sebastián Graf
  • Maria Saldías
  • Walter Silva
  • Inés Alvarez
Article

Abstract

The ideal arterial graft must share identical functional properties with the host artery. Surgical reconstruction of the common carotid artery (CA) is performed in several clinical situations, using expanded polytetrafluoroethylene prosthesis (ePTFE) or saphenous vein (SV) grafts. At date there is interest in obtaining an arterial graft that improves the results of that nowadays available. The use of a fresh or cryopreserved/defrosted artery appears as an interesting alternative. However, if the fresh and cryopreserved/defrosted arteries allow an adequate viscoelastic and functional matching with the host arteries needs to be established. The aims were to compare the viscoelastic and functional performance of: (1) conduits used in CA reconstruction (SV and ePTFE) with those of the fresh and cryopreserved/defrosted CA and femoral arteries (FA), and (2) normotensive and hypertensive patients’ arteries with those of the arterial substitutes in vitro analyzed. Pressure, diameter and wall thickness of the CA were recorded in 15 normotensive and 15 hypertensive patients (in vivo studies), and in SV, fresh and cryopreserved/defrosted CA and FA (obtained from 15 donors), and ePTFE segments (in vitro studies). From stress–strain relationship we calculated elastic and viscous modulus, and the characteristic impedance. The local buffer and conduit functions were quantified as the viscous/elastic quotient and the inverse of the characteristic impedance. Fresh and cryopreserved/defrosted CA and FA were more alike, both in viscoelastic and functional levels, respect to normotensive and hypertensive patients’ arteries, than the ePTFE and SV grafts. CA and FA cryografts could be considered an important alternative for carotid reconstruction.

Keywords

Arterial wall Carotid bypass Carotid reconstruction Cryopreservation ePTFE Femoral artery Functional matching Saphenous vein Stress–strain Viscoelasticity 

Abbreviations

CA

Carotid artery

ePTFE

Expanded polytetrafluoroethylene

FA

Femoral artery

SV

Saphenous vein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez I., Saldias M., Wodowoz O., Perez H., Machin D., Silva W., Sueta P., Perez N. and Acosta C. (2003). Progress of National Multi-tissue Bank in Uruguay in the International Atomic Energy Agency (IAEA) Tissue Banking Programme. Cell Tissue Bank. 4(2–4): 173–178PubMedCrossRefGoogle Scholar
  2. Armentano R.L., Barra J.G., Levenson J., Simon A. and Pichel RH. (1995a). Arterial wall mechanics in conscious dogs: assessment of viscous, inertial, and elastic moduli to characterize aortic wall behaviour. Circ. Res. 76, 468–478Google Scholar
  3. Armentano R., Megnien J.L., Simon A., Bellenfant F., Barra J. and Levenson J. (1995b). Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26: 48–54Google Scholar
  4. Armentano R.L., Graf S., Barra J.G., Velikovsky G., Baglivo H., Sánhez R., Simon A., Pichel R.H. and Levenson J. (1998). Carotid wall viscosity increase is related to intima-media thickening in hypertensive patients. Hypertension 31(part 2):534–539PubMedGoogle Scholar
  5. Arnaud F. (2000). Endothelial and smooth muscle changes of the thoracic and abdominal aorta with various types of cryopreservation. J. Surg. Res. 89(2): 147–154PubMedCrossRefGoogle Scholar
  6. Astrand H., Sandgren T., Ahlgren A.R. and Lanne T. (2003). Noninvasive ultrasound measurements of aortic intima-media thickness: implications for in vivo study of aortic wall stress. J. Vasc. Surg. 37:1270–1276PubMedCrossRefGoogle Scholar
  7. Bia Santana D., Barra J.G., Grignola J.C., Gines F.F. and Armentano R.L. (2005a). Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension. J. Appl. Physiol. 98: 605–613Google Scholar
  8. Bia D., Armentano R.L., Zócalo Y., Barmak W., Migliaro E. and Cabrera Fischer E.I. (2005b). In vitro model to study arterial wall dynamics through pressure-diameter relationship analysis. Latin Am. Appl. Res. 35: 217–224Google Scholar
  9. Bia D., Pessana F., Armentano R., Pérez H., Graf S., Zócalo Y., Saldías M., Pérez N., Alvarez O., Silva W., Machin D., Sueta P., Ferrin S., Acosta M. and Alvarez I. 2006. Cryopreservation procedure does not modify human carotid homografts mechanical properties: an isobaric and dynamic analysis. Cell Tissue Bank. (In press)Google Scholar
  10. Cholley B.P., Lang R.M., Korcarz C.E. and Shroff S.G. (2001). Smooth muscle relaxation and local hydraulic impedance properties of the aorta. J. Appl. Physiol. 90(6):2427–2438PubMedGoogle Scholar
  11. Dardik H. and Greisler H. (1999). Seminars in vascular surgery: History of prosthetic grafts. Semin. Vasc. Surg. 12(1):1–7PubMedGoogle Scholar
  12. Fahy G.M., Levy D.I. and Ali S.E. (1987). Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology. 24(3): 196–213PubMedCrossRefGoogle Scholar
  13. Fields C.E. and Bower T.C. (2004). Use of superficial femoral artery to treat an infected great vessel prosthetic graft. J. Vasc. Surg. 40(3):559–563PubMedCrossRefGoogle Scholar
  14. Gariepy J., Massonneau M., Levenson J., Heudes D. and Simon A. (1993). Groupe de Prévention Cardio-vasculaire en Médecine du Travail. Evidence for in vivo carotid and femoral wall thickening in human hypertension. Hypertension 22: 111–118PubMedGoogle Scholar
  15. Graf S., Gariepy J., Massoneau M., Armentano R.L., Masour S., Barra J.G., Simon A. and Levenson J. (1999). Experimental and clinical validation of arterial diameter waveform and intimal media thickness obtained from B-mode ultrasound image processing. Ultrasound Med. Biol. 25(9): 1353–1363PubMedCrossRefGoogle Scholar
  16. Hunt C.J., Song Y.C., Bateson E.A. and Pegg D.E. (1994). Fractures in cryopreserved arteries. Cryobiology. 31(5):506–515PubMedCrossRefGoogle Scholar
  17. Karlsson J.O. and Toner M. (1996). Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 17(3):243–256PubMedCrossRefGoogle Scholar
  18. Law M.M., Colburn M.D., Moore W.S., Quinones-Baldrich W.J., Machleder H.I. and Gelabert H.A. (1995). Carotid-subclavian bypass for brachiocephalic occlusive disease. Choice of conduit and long-term follow-up. Stroke 26(9):1565–1571PubMedGoogle Scholar
  19. Mavrilas D. and Tsapikouni T. (2002). Dynamic mechanical properties of arterial and venous grafts used in coronary bypass surgery. J. Mech. Med. Biol. 2(3–4): 1–9Google Scholar
  20. Morita S., Asou T., Kuboyama I., Harasawa Y., Sunagawa K. and Yasui H. (2002). Inelastic vascular prosthesis for proximal aorta increases pulsatile arterial load and causes left ventricular hypertrophy in dogs. J. Thorac. Cardiovasc. Surg. 124(4):768–74PubMedCrossRefGoogle Scholar
  21. Nichols W.W., O’Rourke M.F. (1998). Properties of the arterial wall: practice. In: Nichols WW, O’Rourke MF (eds) Mc Donald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. Arnold, London, pp. 73–97Google Scholar
  22. Nishinari K., Wolosker N., Yazbek G., Malavolta L.C., Zerati A.E. and Kowalski L.P. (2002). Carotid reconstruction in patients operated for malignant head and neck neoplasia. Sao Paulo Med. J. 120(5):137–140PubMedCrossRefGoogle Scholar
  23. Pegg D.E., Wusteman M.C. and Boylan S. (1997). Fractures in cryopreserved elastic arteries. Cryobiology 34:183–192PubMedCrossRefGoogle Scholar
  24. Pepine C.J. and Nichols W.W. (1982). Aortic input impedance in cardiovascular disease. Prog. Cardiovasc. Dis. 24(4):307–318PubMedCrossRefGoogle Scholar
  25. Pontrelli G. and Rossoni E. (2003). Numerical modelling of the pressure wave propagation in the arterial flow. Int. J. Numer. Meth. Fluids 43:651–671CrossRefGoogle Scholar
  26. Rigol M., Heras M., Martinez A., Zurbano M.J., Agusti E., Roig E., Pomar J.L. and Sanz G. (2000). Changes in the cooling rate and medium improve the vascular function in cryopreserved porcine femoral arteries. J. Vasc. Surg. 31(5):1018–1025PubMedCrossRefGoogle Scholar
  27. Rosset E., Friggi A., Novakovitch G., Rolland P.H., Rieu R., Pellissier J.F., Magnan P.E. and Branchereau A. (1996). Effects of cryopreservation on the viscoelastic properties of human arteries. Ann. Vasc. Surg. 10(3):262–272PubMedCrossRefGoogle Scholar
  28. Sessa C.N., Morasch M.D., Berguer R., Kline R.A., Jacobs J.R. and Arden R.L. (1998). Carotid resection and replacement with autogenous arterial graft during operation for neck malignancy. Ann. Vasc. Surg. 12(3):229–235PubMedCrossRefGoogle Scholar
  29. Shadwick R.E. (1999). Mechanical design in arteries. J Exp Biol. 202 Pt 23:3305–3313PubMedGoogle Scholar
  30. Silver F.H., Snowhill P.B. and Foran D.J. (2003). Mechanical behavior of vessel wall: a comparative study of aorta, vena cava, and carotid artery. Ann. Biomed. Eng. 31(7): 793–803PubMedCrossRefGoogle Scholar
  31. Sise M.J., Ivy M.E., Malanche R. and Ranbarger K.R. (1992). Polytetrafluoroethylene interposition grafts for carotid reconstruction. J. Vasc. Surg. 16(4): 601–606PubMedCrossRefGoogle Scholar
  32. Snyderman C.H. and D’Amico F. (1992). Outcome of carotid artery resection for neoplastic disease: a meta-analysis. Am. J. Otolaryngol. 13(6):373–380PubMedCrossRefGoogle Scholar
  33. Tai N.R., Salacinski H.J., Edwards A., Hamilton G. and Seifalian A.M. (2000). Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87: 1516–1524PubMedCrossRefGoogle Scholar
  34. Vernhet H., Jean B., Lust S., Laroche J.P., Bonafé A., Sénac J.P., Quéré I. and Dauzat M. (2003). Wall mechanics of the stented extracranial carotid artery. Stroke 34: 222–224CrossRefGoogle Scholar
  35. Wassenaar C., Wijsmuller E.G., Van Herwerden L.A., Aghai Z., Van Tricht C.L. and Bos E. (1995). Cracks in cryopreserved aortic allografts and rapid thawing. Ann. Thorac. Surg. 60(2 Suppl):S165–167PubMedCrossRefGoogle Scholar
  36. Wengerter K. and Dardik H. (1999). Biological vascular grafts. Semin. Vasc. Surg.12(1): 46–51PubMedGoogle Scholar
  37. Westerhof N. and Noordergraaf A. (1970). Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. J. Biomech. 3: 357–379PubMedCrossRefGoogle Scholar
  38. Wright J.G., Nicholson R., Schuller D.E. and Smead W.L. (1996). Resection of the internal carotid artery and replacement with greater saphenous vein: a safe procedure for en bloc cancer resections with carotid involvement. J. Vasc. Surg. 23(5):775–780PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Daniel Bia Santana
    • 1
  • Ricardo L. Armentano
    • 1
    • 2
  • Yanina Zócalo
    • 1
  • Héctor Pérez Cámpos
    • 3
  • Edmundo I. Cabrera Fischer
    • 2
    • 4
  • Sebastián Graf
    • 4
  • Maria Saldías
    • 3
  • Walter Silva
    • 3
  • Inés Alvarez
    • 3
  1. 1.Physiology Department, School of MedicineRepublic UniversityMontevideoRepública Oriental del Uruguay
  2. 2.Faculty of Engineering and Natural and Exact SciencesFavaloro UniversityBuenos AiresArgentina
  3. 3.National Institute for Donation, and Transplant of Cells, Tissues and Organs (INDT) Ex National Bank of Organs and TissuesPublic Health Ministry, School of MedicineMontevideoUruguay
  4. 4.Member of the Research Career, CONICETBuenos AiresArgentina

Personalised recommendations