Cell and Tissue Banking

, Volume 6, Issue 4, pp 271–275 | Cite as

Validating a Low Dose Gamma Irradiation Process for Sterilizing Allografts Using ISO 11137 Method 2B

  • Thomas F. Baker
  • Chad J. Ronholdt
  • Simon Bogdansky


This paper describes the validation of an allograft sterilization method specifically designed for the processing methods used at AlloSource in Centennial, CO. The methods used for this validation followed ISO Standard 11137, Method 2B. Three hundred allografts, collected from three defined production batches were dosed using a series of five incremental doses, beginning at 1 kGy and increasing by 1 kGy until 5 kGy was achieved. Following sterilization dosing, each allograft test article was analyzed using a sterility test to identify any viable microorganisms. The number of positive sterility samples was used to calculate the verification dose (1.27 kGy), which was then verified by an additional batch of 100 allografts. The results from this validation indicate that sterility (10−6 SAL) on human allograft tissue using gamma 60Co radiation can be achieved when a dose of at least 9.2 kGy is employed.


Allograft tissue Bioburden Gamma 60Co radiation Sterility assurance level Sterilization dose Validation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen M.J., Keyak J.H. and Skinner H.B. 1992. Compressive mechanical properties of human cancellous bone after gamma irradiation. J. Bone Joint Surg. Am. 74: 747–752.Erratum in: J. Bone Joint Surg. Am. 1992 74(8): 1274.Google Scholar
  2. Centers for Disease Control and Prevention2003Invasive Streptococcus pyogenes after allograft implantation – ColoradoMMWR5211731176Google Scholar
  3. Cloward, R.B. 1980Gas-sterilized cadaver bone grafts for spinal fusion operations. A simplified bone bankSpine5410PubMedGoogle Scholar
  4. Crawford, C., Kainer, M., Jernigan, D.,  et al. 2005Investigation of postoperative allograft-associated infections in patients who underwent musculoskeletal allograft implantationClin. Infect. Dis.41195200CrossRefPubMedGoogle Scholar
  5. Currery, J.D., Foreman, J., Laketic, I.,  et al. 1997Effects of ionizing radiation on the mechanical properties of human boneJ. Orthop. Res.15111117Google Scholar
  6. De Deyne, P., Haut, R.C. 1991Some effects of gamma irradiation on patellar tendon allograftsConnect. Tissue Res.275162PubMedGoogle Scholar
  7. Fideler, B.M., Vangsness, C.T.,Jr., Lu, B., Orlando, C., Moore, T. 1995Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allograftsAm. J. Sports Med.23643646PubMedGoogle Scholar
  8. Godette, G.A., Kopta, J.A., Egle, D.M. 1996Biomechanical effects of gamma irradiation on fresh frozen allografts in vivoOrthopaedics19649653Google Scholar
  9. Hamer, A.J., Strachan, J.R., Black, M.M.,  et al. 1996Biochemical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of freshfresh-frozen and irradiated boneJ. Bone Joint Surg. Br.78363368PubMedGoogle Scholar
  10. Hartill C., Lennox A. and Arola T. 2003. New Technologies in Tissue Banking: How FDA and Industry are Addressing Patient Safety. Regulatory Affairs Focus. Novemeber13–17.Google Scholar
  11. Jackson, D.W., Windeler, G.E., Simon, T.M. 1990Intraarticular reaction associated with the use of freeze-driedethylene oxide-sterilized bone patella tendon-bone allografts in the reconstruction of the anterior cruciate ligamentAm. J.␣Sports Med.18110PubMedGoogle Scholar
  12. Kainer, M.A., Linden, J.V., Whaley, D.N.,  et al. 2004Clostridium infections associated with musculoskeletal tissue allograftsN. Engl. J. Med.35025642571CrossRefPubMedGoogle Scholar
  13. Ronholdt, C.J., Bogdansky, S. 2005

    Determination of microbial bioburden levels on pre-processed allograft tissues

    Kennedy, J.F.Phillips, G.O.Williams, P.A. eds. Sterilisation of Tissues Using Ionising RadiationWoodhead Publishing LimitedCambridge England311318
    Google Scholar
  14. Ronholdt, C.J., Bogdansky, S., Baker, T.F. 2005

    Establishing an appropriate terminal sterilisation dose based upon post-processing bioburden levels on allograft tissues

    Kennedy, J.F.Phillips, G.O.Williams, P.A. eds. Sterilisation of Tissues Using Ionising RadiationWoodhead Publishing LimitedCambridge England303309
    Google Scholar
  15. Lawrence, W.H., Ithoh, K., Turner, J.E., Autian, J. 1971Toxicity of ethylene chlorohydrin II. Subacute toxicity and special testsJ. Pharm. Sci.6011631168PubMedGoogle Scholar
  16. Malinin, T.I., Buck, B.E., Temple, H.T.,  et al. 2003Incidence of clostridial contamination in donorsȁ9 musculoskeletal tissueJ. Bone Joint Surg. Br.8510511054CrossRefPubMedGoogle Scholar
  17. Pelker, R.R., Friedlaender, G.E., Markham, T.C. 1983Biomechanical properties of bone allograftsClin. Orthop.1745457PubMedGoogle Scholar
  18. Roberts, T.S., Drez, D.,Jr., McCarthy, W., Paine, R. 1991Anterior cruciate ligament reconstruction using freeze driedethylene oxide-sterilizedbone-patellar tendon-bone allografts. Two year results in thirty-six patientsAm. J. Sports Med.193541PubMedGoogle Scholar
  19. Vangsness, C.T.,Jr., Triffon, M.J., Joyce, M.J.,  et al. 1996Soft tissue for allograft reconstruction of the human knee: a survey of the American Association of Tissue BanksAm. J. Sports Med.24230234PubMedGoogle Scholar
  20. Woll J.E. and Kasprisin D.(eds), 2002. In: Standards for Tissue Banking. American Association of Tissue Banks.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Thomas F. Baker
    • 1
  • Chad J. Ronholdt
    • 1
  • Simon Bogdansky
    • 1
  1. 1.AlloSourceCentennialUSA

Personalised recommendations