Advertisement

Cybernetics and Systems Analysis

, Volume 55, Issue 2, pp 336–346 | Cite as

Method and Algorithm for Obtaining Elements of the Tensor of Spatial Derivatives of the Magnetic Induction Vector in the Problem of Searching for Magnetic Anomalies

  • M. A. PriminEmail author
  • I. V. Nedayvoda
Article
  • 5 Downloads

Abstract

The values of all the components of the magnetic induction vector and its first-order spatial derivatives are determined from the spatial distribution of the magnetic field parameter values at each point of the observation plane. The inverse problem is solved using the analytic eigenvector method. The execution of the proposed algorithm was simulated using real data of magnetometric studies in the geomagnetic field.

Keywords

magnetic anomaly magnetostatic inverse problem spatial derivatives tensor Fourier transform SQUID gradiometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Nabighian, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W. Peirce, J. D. Phillips, and M. E. Ruder, “The historical development of the magnetic method in exploration,” Geophysics, Vol. 70, No. 6, 33ND–61ND (2005).CrossRefGoogle Scholar
  2. 2.
    Yu. I. Blokh, Interpretation of Gravitational and Magnetic Anomalies [in Russian], MGGA, Moscow, (2009).Google Scholar
  3. 3.
    W. Baranov, Potential Fields and Their Transformations in Applied Geophysics [Russian translation], Nedra, Moscow (1980).Google Scholar
  4. 4.
    M. A. Primin, V. I. Goumenyuk-Sychevsky, and I. V. Nedayvoda, Methods and Algorithms for Localization of Magnetic Field Source [in Russian], Naukova Dumka, Kyiv (1992).Google Scholar
  5. 5.
    M. Primin and I. Nedayvoda, “Inverse problem solution algorithms in magnetocardiography: New analytical approach and some results,” International Journal of Applied Electromagnetics and Mechanics, Vol. 29, No. 2, 65–81 (2009).CrossRefGoogle Scholar
  6. 6.
    M. A. Primin and I. V. Nedayvoda, “A method and an algorithm to reconstruct the spatial structure of current density vectors in magnetocardiography,” Cybernetics and Systems Analysis, Vol. 53, No. 3, 485–494 (2017).  https://doi.org/10.1007/s10559-017-9950-6.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    L. B. Pedersen and T. M. Rasmussen, “The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps,” Geophysics, Vol. 55, No. 12, 1558–1566 (1990).CrossRefGoogle Scholar
  8. 8.
    A. Chwala, R. Stolz, V. Zakosarenko, L. Fritzsch, M. Schulz, A. Rompel, L. Polome, M. Meyer, and H. G. Meyer, “Full tensor SQUID gradiometer for airborne exploration,” in: 22nd International Geophysical Conference and Exhibition, Brisbane, Australia (2012), pp. 1–4.Google Scholar
  9. 9.
    P. Schmidt, D. Clark, K. Leslie, M. Bick, D. Tilbrook, and C. Foley, “GETMAG — a SQUID magnetic tensor gradiometer for mineral and oil exploration,” Exploration Geophysics, Vol. 35, No. 4, 297–305 (2004).CrossRefGoogle Scholar
  10. 10.
    T. J. Gamey, Development and Evaluation of an Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System for Detection, Characterization and Mapping of Unexploded Ordnance: SERDP Project MM-1316 (2008).Google Scholar
  11. 11.
    W. M. Wynn, C. P. Frahm, P. J. Carroll, R. H. Clark, J. Wellhoner, and M. J. Wynn, “Advanced superconducting gradiometer/magnetometer arrays and a novel signal processing technique,” IEEE Trans. Mag., Vol. 11, Iss. 2, 701–707 (1975).CrossRefGoogle Scholar
  12. 12.
    Yu. V. Maslennikov, M. A. Primin, V. Yu. Slobodtchikov, I. V. Nedayvoda, V. A. Krymov, V. V. Khanin, G. G. Ivanov, N. A. Bulanova, S. Yu. Kuznetsova, and V. N. Gunaeva, “SQUID-based magnetometric systems for cardiac diagnostics,” Biomedical Engineering, Vol. 51, No. 3, 153–156 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations