Advertisement

Cybernetics and Systems Analysis

, Volume 55, Issue 2, pp 321–328 | Cite as

Asymptotic Behavior of Extreme Values of Queue Length in M / M / m Systems

  • B. V. DovhaiEmail author
  • I. K. Matsak
Article
  • 5 Downloads

Abstract

The paper investigates the asymptotic behavior of almost surely maximum length in queueing systems. For a system M / M / m, 1≤ m< ∞, a statement of the type of the law of iterated logarithm is established. We also consider the case m = ∞ for which the asymptotic behavior is much different.

Keywords

queuing system M M m extreme values of queue length asymptotic behavior almost surely 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Gnedenko and I. N. Kovalenko, Introduction to Queuing Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    S. Karlin, A First Course in Stochastic Processes [Russian translation], Mir, Moscow (1971).Google Scholar
  3. 3.
    V. V. Anisimov, V. K. Zakusilo, and V. S. Donchenko, Elements of the Queuing Theory and Asymptotic Analysis of Systems [in Russian], Vysshaya Shkola, Kyiv (1987).Google Scholar
  4. 4.
    J. W. Cohen, “Extreme values distribution for the M / G /1 and G / I / M / 1 queueing systems,” Ann. Inst. H. Poincare., Sect. B, Vol. 4, 83–98 (1968).MathSciNetzbMATHGoogle Scholar
  5. 5.
    C. W. Anderson, “Extreme value theory for a class of discrete distribution with application to some stochastic processes,” J. Appl. Prob., Vol. 7, 99–113 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. L. Iglehart, “Extreme values in the GI / G /1 queue,” Ann. Math. Statist., Vol. 43, 627–635 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. F. Serfozo, “Extreme values of birth and death processes and queues,” Stochastic Processes and Their Applications, Vol. 27, 291–306 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Asmussen, “Extreme values theory for queues via cycle maxima,” Extremes, Vol. 1, 137–168 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    O. K. Zakusylo and I. K. Matsak, “On extreme values of some regenerative processes,” Teoriya Jmovirn. ta Mat. Statystyka, No. 97, 58–71 (2017).Google Scholar
  10. 10.
    I. K. Matsak, “Asymptotic behavior of extreme values of random variables. Discrete case,” Ukr. Math. J., Vol. 68, No. 7, 1077–1090 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley (1978).Google Scholar
  12. 12.
    W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations