Advertisement

Methods of Numerical Forecasting of Serviceability of Welded Structures on Computers of Hybrid Architecture

  • E. A. VelikoivanenkoEmail author
  • A. S. Milenin
  • A. V. Popov
  • V. A. Sidoruk
  • A. N. Khimich
Article
  • 2 Downloads

Abstract

The authors consider high-performance computational algorithms for computers of hybrid architecture to solve problems of predicting the stress–strain state of critical welded structures with regard for initiation and development of subcritical fracture of metal in accordance with the characteristic problems of serviceability analysis of welded pipeline elements with corrosive defects of metal discontinuity according to mechanism of low-cycle fatigue.

Keywords

mathematical modeling high-performance computing hybrid algorithms stress–strain state ductile fracture welded structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Tsirkas, “Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components,” Optics & Laser Technology, Vol. 100, 45–56 (2018).CrossRefGoogle Scholar
  2. 2.
    V. I. Makhnenko, “Problems of the expertise of modern critical welded structures,” Avtomatich. Svarka, No. 5, 22–29 (2013).Google Scholar
  3. 3.
    E. A. Velikoivanenko, G. F. Rozynka, A. S. Milenin, and N. I. Pivtorak, “Assessment of serviceability of turnpike pipeline with local thinning of wall in repair by arc surfacing,” Avtomatich. Svarka, No. 1, 22–27 (2015).Google Scholar
  4. 4.
    G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova, Physico-Mechanical Modeling of Fracture Processes [in Russian], Politekhnika, St. Petersburg (1993).Google Scholar
  5. 5.
    L. Xue, “Constitutive modeling of void shearing effect in ductile fracture of porous materials,” Engineering Fracture Mechanics, Vol 75, Iss. 11, 3343–3366 (2008).CrossRefGoogle Scholar
  6. 6.
    V. I. Makhnenko, Resource of Safe Maintenance of Welded Junctions and Nodes of Modern Structures [in Russian], Naukova Dumka, Kyiv (2006).Google Scholar
  7. 7.
    E. A. Velikoivanenko, G. F. Rozynka, A. S. Milenin, and N. I. Pivtorak, “Modeling of the processes of origin and development of pores of ductile fracture in welded structures,” Avtomatich. Svarka, No. 9, 26–31 (2013).Google Scholar
  8. 8.
    A. V. Popov and A. N. Khimich, “Parallel algorithm to solve system of linear algebraic equations with band symmetric matrix,” Komp. Matematika, No. 2, 52–59 (2005).Google Scholar
  9. 9.
    E. F. Galba, I. N. Molchanov, and V. V. Skopetsky, “Methods of computing weighted pseudoinverse matrices with singular weights,” Cybern. Syst. Analysis, Vol. 35, No. 5, 814–831 (1999).CrossRefzbMATHGoogle Scholar
  10. 10.
    E. F. Galba, “Weighted singular decomposition and weighted pseudoinversion of matrices,” Ukr. Math. J., Vol. 48, Iss. 10, 1618–1622 (1996).CrossRefzbMATHGoogle Scholar
  11. 11.
    A. N. Khimich, A. V. Popov, and V. V. Polyanko, “Algorithms of parallel computations for linear algebra problems with irregularly structured matrices,” Cybern. Syst. Analysis, Vol. 47, No. 6, 973–985 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Yu. Baranov, “Hybrid algorithm for factorization of band non-symmetric matrices,” Teoriya Optym. Rishen’, No. 2015, 22–28 (2015).Google Scholar
  13. 13.
    O. M. Khimich and V. A. Sidoruk, “Plate hybrid algorithm of factorization of sparse block-diagonal matrices with bordering,” Komp. Matematika, No. 1, 72–79 (2016).Google Scholar
  14. 14.
    O. V. Popov and O. V. Rudich, “Solving systems of linear equations using computers of hybrid architecture,” Matem. ta Komp. Modelyuvannya, Ser. Fiz.-Mat. Nauky, Issue 15, 158–164 (2017).Google Scholar
  15. 15.
    V. A. Sidoruk, “One-node hybrid algorithm of factorization of sparse matrices,” Matem. ta Komp. Modelyuvannya, Ser. Fiz.-Mat. Nauky, Issue 15, 194–200 (2017).Google Scholar
  16. 16.
  17. 17.
    A. George and J. Liu, Computer Solution of Large Sparse Systems of Equations [Russian translation], Mir, Moscow (1984).Google Scholar
  18. 18.
    A. N. Khimich, I. N. Molchanov, A. V. Popov, T. V. Chistyakova, and M. F. Yakovlev, Parallel Algorithms to Solve Problems of Calculus Mathematics [in Russian], Naukova Dumka, Kyiv (2008).Google Scholar
  19. 19.
    The Fastest and Most-Used Math Library for Intel®-Based Systems. URL: https://software.intel.com/en-us/mkl.
  20. 20.
    Supercomputer Inst. Cybern. NAS of Ukraine. URL: http://icybcluster.org.ua.
  21. 21.
    Intelligent Parallel Computers “Inparkom,” http://www.geopoisk.com/inparcom/ru/index_ru.htm.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. A. Velikoivanenko
    • 1
    Email author
  • A. S. Milenin
    • 1
  • A. V. Popov
    • 2
  • V. A. Sidoruk
    • 2
  • A. N. Khimich
    • 2
  1. 1.E. O. Paton Electric Welding Institute, National Academy of Sciences of UkraineKyivUkraine
  2. 2.V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations