Advertisement

Atmospheric Processes in Urban Area Elements

  • V. A. PrusovEmail author
  • A. Yu. Doroshenko
  • T. A. Sologub
Article

Abstract

The authors demonstrate the efficiency and accuracy of the developed hydrodynamic model of the atmosphere, turbulent closure model, approximation methods for first- and second-order derivatives on an irregular grid, and the absolutely stable difference scheme based on the solution of applied problems. The results of mathematical modeling of aerodynamics of street canyons are compared with available theoretical and experimental data. Influence of street canyon length and house height on air flow characteristics in urban areas is investigated. It is shown that changes in the configuration of urban area lead not only to quantitative but also to a significant qualitative variation in air flow pattern and velocity.

Keywords

hydrodynamic mesoscale model of the atmosphere difference scheme closure of turbulence model wind velocity vorticity rectangular channel street canyon urban area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Prusov and A. Doroshenko, Computational Techniques for Modeling Atmospheric Processes, IGI Global USA, Hershey (2018).CrossRefzbMATHGoogle Scholar
  2. 2.
    V. A. Prusov and A. P. Romanyuk, “Mathematical model of turbulence for stratified media,” Proc. UkrNDGMI, Issue 246, 35–45 (1998).Google Scholar
  3. 3.
    O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Phil. Trans. Roy. Soc., Vol. 174, 935–982 (1895).Google Scholar
  4. 4.
    I. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in Atmosphere Boundary Layer [in Russian], Gidrometeoizdat, Leningrad (1989).Google Scholar
  5. 5.
    W. Kollman (ed.), Prediction Methods for Turbulent Flows, McGraw-Hill Education (1980).Google Scholar
  6. 6.
    W. Frost and T. Moulden (eds.), Handbook of Turbulence, Vol. 1, Fundamentals and Applications, Springer (1977).Google Scholar
  7. 7.
    B. Galperin, L. Kantha, S. Hassid, and A. Rosati, “A quasi-equilibrium turbulent energy model for geophysical flows,” J. Atmos. Sci., Vol. 45, 55–62 (1988).CrossRefGoogle Scholar
  8. 8.
    J. Boussinesq, “Theorie de l’ecoulement tourbillant,” Mem. Pres. Acad. Sci., XXIII (1877).Google Scholar
  9. 9.
    A. Kolmogorov, “Local structure of turbulence in an incompressible fluid at very large Reynolds numbers,” Doklady AN USSR, Vol. 39, 299–303 (1941).Google Scholar
  10. 10.
    J. Rotta, “Statistische Theorie nichthomogener Turbulenz,” Zeitschrift fur Physik, Vol. 129, No. 6, 547–572 (1951).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. Prandtl, “Uber die ausgebildete Turbulenz,” ZAMM, Vol. 5, 136–139 (1925).zbMATHGoogle Scholar
  12. 12.
    Th. von Karman, “Mechanische Ahnlichkeit und Turbulenz,” Nachr. Ges. Wiss. Gottingen, Math. Phys. Klasse, Vol. 58, 337–346 (1930).Google Scholar
  13. 13.
    A. S. Thom, “Momentum, mass and heat exchange of plant communities,” in: Monteith J.L. (ed.), Vegetation and the Atmosphere, Vol. 1, Principles, Academic Press, London (1975), pp. 57–109.Google Scholar
  14. 14.
    V. Prusov, A. Doroshenko, I. Farago, and A. Havasi, “On the numerical solution of the three-dimensional advection-diffusion equation,” Problemy Programuvannya, No. 2–3, 641–647 (2006).Google Scholar
  15. 15.
    V. A. Prusov, A. E. Doroshenko, R. I. Chernysh, and L. N. Guk, “Efficient difference scheme for numerical solution of a convective diffusion problem,” Cybern. Syst. Analysis, Vol. 43, No. 3, 368–376 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Nikuradse, Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren, Forschg. Arb. Ing.-Wes., Ausgabe, No. 356 (1932).Google Scholar
  17. 17.
    I. Nikuradse, Stroemungsgesetze in rauhen Rohren. Forschungs-Heft (Forschungs auf dem Gebiete des Ingenieur-wesens), No. 361, 1–22 (1933).Google Scholar
  18. 18.
    D. Coles, “The law of the wake in the turbulent boundary layer,” J. of Fluid Mechanics, No. 1 (1956).Google Scholar
  19. 19.
    S. J. Kline and P. W. Runstadler, “Some preliminary results of visual studies of the flow model of the wall layers of the turbulent boundary layer,” ASME Trans., Ser. E, Vol. 26, No. 2, 166–170 (1959).Google Scholar
  20. 20.
    H. Schlichting, Boundary Layer Theory, McGraw-Hill College (1979).Google Scholar
  21. 21.
    E. Brundrett and W.D. Baines, “The production and diffusion of vorticity in duct flow,” J. Fluid Mech., Vol. 19, 375–394 (1964).CrossRefzbMATHGoogle Scholar
  22. 22.
    V. I. Kornilov, Spatial Wall-Adjacent Turbulent Flows in Angular Configurations [in Russian], Nauka, Novosibirsk (2000).Google Scholar
  23. 23.
    F. B. Gessner and J. B. Jones, “On some aspects of fully developed turbulent flow in rectangular channels,” J. Fluid Mech., Vol. 23, 689–713 (1965).CrossRefGoogle Scholar
  24. 24.
    E. Brundrett and W. D. Baines, “The production and diffusion of vorticity in duct flow,” J. Fluid Mech., Vol. 19, 375–394 (1964).CrossRefzbMATHGoogle Scholar
  25. 25.
    A. Melling and J. H. Whitelaw, “Turbulent flow in a rectangular duct,” J. Fluid Mech., Vol. 78, No. 2, 289–315 (1976).CrossRefGoogle Scholar
  26. 26.
    L. A. Tepaks, Uniform Turbulent Motion in Pipes and Channels [in Russian], Valgus, Tallinn (1975).Google Scholar
  27. 27.
    I. S. Han, “Hydrodynamic entrance length for incompressible flow in rectangular ducts,” Trans. ASME, J. Applied Mechanics, Vol. 27, No. 3, 403–408 (1960).Google Scholar
  28. 28.
    T. L. Chan, G. Dong, C. W. Leung, C. S. Cheung, and W. T. Hung, “Validation of a two-dimensional pollutant dispersion model in an isolated street canyon,” Atmospheric Environment, Vol. 36, No. 5, 861–872 (2002).CrossRefGoogle Scholar
  29. 29.
    P. G. Mestayer, J.-F. Sini, and M. Jobert, “Simulation of the wall temperature influence on flows and dispersion within street canyons,” Proc. 3rd Intern. Conf. on Air Pollution, Porto Carras, Vol. 1 (1995), pp. 106–109.Google Scholar
  30. 30.
    X. Xie, Z. Huang, J. Wang, and Z. Xie, “The impact of solar radiation and street layout on pollutant dispersion in street canyon,” Building and Environment, Vol. 40, 201–212 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Prusov
    • 1
    Email author
  • A. Yu. Doroshenko
    • 2
  • T. A. Sologub
    • 1
  1. 1.Ukrainian Hydrometeorological Institute, State Service of Emergencies of UkraineNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of Software Systems, National Academy of Sciences of Ukraine and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations