Advertisement

Stochastic Optimization Models for Risk-Based Reservoir Management*

  • Yu. ErmolievEmail author
  • T. Ermolieva
  • T. Kahil
  • M. Obersteiner
  • V. Gorbachuk
  • P. Knopov
Article
  • 9 Downloads

Abstract

The paper provides an overview of publications on reservoir management and formulates a novel stochastic dynamic optimization model for water balance management in the area affected. The proposed stochastic optimization approach allows multiple key performance indicators such as agriculture and energy production, wetland water and flood protection, biodiversity preservation, and reservoir storage. The two-stage feature of the proposed model induces safety constraints on water supply known as chance conditions in stochastic optimization: safety constraints in nuclear energy, stability constraints in insurance business, or constraints on the Conditional Value-at-Risk (CVaR) in finance. The original nonlinear, nonconvex and often discontinuous model can be reduced to linear programming problems.

Keywords

stochastic optimization risk water resource management two-stage problem extreme events 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Gorbachuk, “Optimization models of water quality (based on IIASA data),” V. M. Glushkov Inst. of Cybernetics, Kyiv (1989), pp. 89–60.Google Scholar
  2. 2.
    T. Zhao and J. Zhao, “Optimizing operation of water supply reservoir: The role of constraints,” Mathematical Problems in Engineering, Vol. 2014, ID 853186 (2014), DOI:  https://doi.org/10.1155/2014/853186.
  3. 3.
    Y. Huang, X. Chen, Y. P. Li, A. M. Bao, and Y. G. Ma, “A simulation-based two-stage interval-stochastic programming model for water resources management in Kaidu–Konqi watershed, China,” J. of Arid Land, Vol. 4, No. 4, 390–398 (2012).CrossRefGoogle Scholar
  4. 4.
    E. T. Alemu, R. N. Palmer, A. Polebitski, and B. Meaker, “Decision support system for optimizing reservoir operations using ensemble streamflow predictions,” J. of Water Resources Planning and Management, Vol. 137, No. 1, 72–82 (2010).CrossRefGoogle Scholar
  5. 5.
    W. W. G. Yeh, “Reservoir management and operations models: A state-of-the-art review,” Water Resources Research, Vol. 21, No. 12, 1797–1818 (1985).CrossRefGoogle Scholar
  6. 6.
    R. A. Wurbs, “Reservoir system simulation and optimization models,” J. of Water Resources Planning & Management, Vol. 119, No. 4, 455–472 (1993).CrossRefGoogle Scholar
  7. 7.
    J. W. Labadie, “Optimal operation of multireservoir systems: State-of-the-art review,” J. of Water Resources Planning and Management. Vol. 130, No. 2, 93–111 (2004).CrossRefGoogle Scholar
  8. 8.
    B. H. Dias, A. L. M. Marcato, R. C. Souza, et al., “Stochastic dynamic programming applied to hydrothermal power systems operation planning based on the convex hull algorithm,” Mathematical Problems in Engineering, Vol. 2010, Article ID 390940 (2010). DOI:  https://doi.org/10.1155/2010/390940.
  9. 9.
    M. A. Boucher, D. Tremblay, L. Delorme, L. Perreault, and F. Anctil, “Hydro-economic assessment of hydrological forecasting systems,” J. Hydrol., Vol. 416–417, 133–144 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Zhao, D. Yang, X. Cai, J. Zhao, and H. Wang, “Identifying effective forecast horizon for real-time reservoir operation under a limited inflow forecast,” Water Resources Research, Vol. 48, No. 1 (2012). DOI:  https://doi.org/10.1029/2011WR010623.
  11. 11.
    F. Laufer and H.J. Morel-Seytoux, “Optimal weekly release from a seasonal reservoir. 1. Deterministic future,” Water Resources Research, Vol. 15, No. 2, 383–398 (1979).CrossRefGoogle Scholar
  12. 12.
    J. R. Stedinger, B. F. Sule, and D. P. Loucks, “Stochastic dynamic programming models for reservoir operation optimization,” Water Resources Research, Vol. 20, No. 11, 1499–1505 (1984).CrossRefGoogle Scholar
  13. 13.
    H. A. Loaiciga and M.A. Marino, “Risk analysis for reservoir operation,” Water Resources Research, Vol. 22, No. 4, 483–488 (1986).CrossRefGoogle Scholar
  14. 14.
    T. M. Carpenter and K. P. Georgakakos, “Assessment of Folsom lake response to historical and potential future climate scenarios: 1. Forecasting,” J. Hydrol., Vol. 249, Iss. 1–4, 148–175 (2001).Google Scholar
  15. 15.
    H. Yao and A. Georgakakos, “Assessment of Folsom lake response to historical and potential future climate scenarios: 2. Reservoir management,” J. Hydrol., Vol. 249, Iss. 1–4, 176–196 (2001).Google Scholar
  16. 16.
    F. X. Wang, L. Wang, H. C. Zhou, O. C. S. Valeriano, T. Koike, and W. L. Li, “Ensemble hydrological prediction-based real-time optimization of a multiobjective reservoir during flood season in a semiarid basin with global numerical weather predictions,” Water Resources Research, Vol. 48, No. 7 (2012). DOI:  https://doi.org/10.1002/2017WR021480.
  17. 17.
    T. Dysarz, “Control of the reservoirs system during flood: Concept of learning in multi-stage decision process,” Technical Report IR-05-031, International Institute for Applied Systems Analysis, Schlossplatz 1 A-2361 Laxenburg, Austria (2005). URL: http://pure.iiasa.ac.at/7804.
  18. 18.
    P. D. Jones, J. M. Murphy, and M. Noguer, “Simulation of climate change over Europe using a nested regional — climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries,” Q. J. R. Meteorol. Soc., Vol. 121, Iss. 526, 1413–1449 (1995).Google Scholar
  19. 19.
    J. Murphy, “An evaluation of statistical and dynamical techniques for downscaling of local climate,” J. Clim., Vol. 12, No. 8, 2256–2284 (1999).CrossRefGoogle Scholar
  20. 20.
    B. C. Bates, S. P. Charles, and J. P. Hughes, “Stochastic downscaling of numerical climate model simulations,” Environ. Model. Software, Vol. 13, Iss. 3–4, 325–331 (1998).Google Scholar
  21. 21.
    C. Prudhomme, N. S. Reynard, and S. Crooks, “Downscaling of GCMs for flood frequency analysis: Where are we now?” Hydrol. Process., Vol. 16, Iss. 6, 1137–1150 (2002). DOI:  https://doi.org/10.1002/hyp.1054.
  22. 22.
    C. Prudhomme, D. Jakob, and C. Svensson, “Uncertainty and climate change impact on the flood regime of small UK catchments,” J. Hydrol., Vol. 277, Iss. 1, 1–23 (2003).Google Scholar
  23. 23.
    G. Burger, “Expanded downscaling for generating local weather scenarios,” Clim. Res., Vol. 7, 111–128 (1996).CrossRefGoogle Scholar
  24. 24.
    D. Conway and P. D. Jones, “The use of weather types and air flow indices for GCM Downscaling,” J. Hydrol., Vol. 212–213, Iss. 1–4, 348–361 (1998).Google Scholar
  25. 25.
    D. J. Sailor, T. Hu, X. Li, and J. N. Rosen, “A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change,” Renewable Energy, Vol. 19, Iss. 3, 359–378 (2000).Google Scholar
  26. 26.
    J. Stehlik and A. Bardossy, “A multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation,” J. Hydrol., Vol. 256, Iss. 1–2, 120–141 (2002).Google Scholar
  27. 27.
    R. L. Wilby, C. W. Dawson, and E. M. Barrow, “SDSM — A decision support tool for the assessment of regional climate change impacts,” Environ. Model. Software, Vol. 17, Iss. 2, 145–157 (2002).Google Scholar
  28. 28.
    M. A. Semenov and E. M. Barrow, “Use of a stochastic weather generator in the development of climate change scenarios,” Clim. Change, Vol. 35, No. 4, 397–414 (1997).CrossRefGoogle Scholar
  29. 29.
    D. S. Wilks, “Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain,” Agric. For. Meteorol., Vol. 96, Iss. 1–3, 85–101 (1999).Google Scholar
  30. 30.
    G. Goodsell and R. Lamb, “Estimating long return period floods by continuous simulation using a stochastic rainfall generator,” Report to MAFF, project FD 404 (1999).Google Scholar
  31. 31.
    P. Eagelson, “Dynamics of flood frequency,” Water Resources Research, Vol. 8, Iss. 4, 878–898 (1972).Google Scholar
  32. 32.
    M. B. Abbott, J. C. Bathurst, J. A. Cung, P. E. O’connell, and J. Rasmussen, “An introduction to the European Hydrological System — Systeme Hydrologique Europeen SHE. 2: Structure of a physically-based, distributed modelling system,” J. Hydrol., Vol. 87, Iss. 1, 61–77 (1986). DOI:  https://doi.org/10.1029/WR008i004p00878.
  33. 33.
    E. M. Morris, “Forecasting flood flows in grassy and forecasted catchments using a deterministic distributed mathematics model,” in: Hydrological Forecasting — Prévisions Hydrologiques, Proc. of the Oxford Symposium, April 1980; Actes du Colloque d’Oxford, April 1980, IAHS-AISH Publ. No. 129 (1980), pp. 247–255. URL: http://hydrologie.org/redbooks/a129/iahs_129_0247.pdf.
  34. 34.
    W. R. Edward, D. A. Woolhiser, and R. E. Smith, “A distributed kinematic model of upland watershed,” Hydrology Paper, Colorado State University, No. 93 (1977). URL: https://mountainscholar.org/bitstream/handle/10217/61820/Hydrologypapers_n93.pdf?sequence=1.
  35. 35.
    B. B. Ross, D. N. Contractor, and V. O. Shanholtz, “A finite element model of overland and channel flow for accessing the hydrologic impact of land use change,” J. Hydrol., Vol. 41, Iss. 1–2, 11–30 (1979).Google Scholar
  36. 36.
    A. W. Jayawardena and J. K. White, “A finite element distributed catchment model: I. Analytical basis," J. Hydrol., Vol. 34, Iss. 3–4, 269–286 (1977).Google Scholar
  37. 37.
    E. M. Laurenson, “A catchment storage model for runoff routing,” J. Hydrol., Vol. 2, 141–163 (1964).CrossRefGoogle Scholar
  38. 38.
    R. P. Ibbitt and T. O’donnell, “Fitting methods for conceptual catchment models,” J. Hydraul. Div., Vol. 97, Iss. 9, 1331–1342 (1971).Google Scholar
  39. 39.
    M. H. Diskin and E. S. Simpson, “A quasi-linear spatial distribution cell model for the surface runoff system,” Water Resource Bull., No. 14, 903–918 (1978).Google Scholar
  40. 40.
    M. H. Diskin, G. Wyseure, and J. Feyen, “Application of a cell model to the Bellebeek watershed,” Nordic Hydrol., Vol. 15, Iss. 1, 25–38 (1984).Google Scholar
  41. 41.
    J. Knudsen, A. Thomsen, and J. C. Refsgaard, “WATBAL: A semi-distributed physically based hydrologic modeling system,” Nordic Hydrol., Vol. 17, No. 4, 347–362 (1986).CrossRefGoogle Scholar
  42. 42.
    “A European Flood Forecasting System EFFS,” EFFS Final Report, Project coordinator: WL | Delft Hydraulics (2003). URL: http://effs.wldelft.nl.
  43. 43.
    A. P. J. De Roo, B. Gouweleeuw, J. Thielen, J. Bartholmes, P. Bongioanninicerlini, E. Todini, P. D. Bares, M. Horritt, N. Hunter, K. Beven, F. Pappenberger, E. Heise, G. Rivin, M. Hils, A. Hollingsworth, B. Holst, J. Kwadijk, P. Reggiani, M. Van Dijk, K. Sattler, and E. Sprokkereef, “Development of a European flood forecasting system,” International Journal of River Basin Management, Vol. 1, No. 1, 49–59 (2003).CrossRefGoogle Scholar
  44. 44.
    A. J. Draper, J. R. Lund, “Optimal hedging and carryover storage value,” J. of Water Resources Planning and Management, Vol. 130, No. 1, 83–87 (2004).CrossRefGoogle Scholar
  45. 45.
    J. Y. You and X. Cai, “Hedging rule for reservoir operations: 1. A theoretical analysis,” Water Resources Research, Vol. 44, No. 1 (2008). DOI:  https://doi.org/10.1029/2006WR005481.
  46. 46.
    J. F. Booker and J. C. O’Neill, “Can reservoir storage be uneconomically large?” J. of Water Resources Planning and Management, Vol. 132, No. 6, 520–523 (2006).CrossRefGoogle Scholar
  47. 47.
    A. Kiczko, “Multi-criteria decision support system for Siemianowka,” Interim Report IR-08-026, Intern. Inst. for Applied Systems Analysis, Laxenburg, Austria (2008).Google Scholar
  48. 48.
    R. Buizza, A. Hollingsworth, F. Lalaurette, and A. Ghelli, “Probabilistic predictions of precipitation using the ECMWF ensemble prediction system,” Weather and Forecasting, Vol. 14, Iss. 2, 168–189 (1999).Google Scholar
  49. 49.
    R. Romanowicz and M. Osuch, “An integrated data based mechanistic lowland catchment model for the Upper Narew,” Publs. Inst. Geophys. Pol. Acad. Sc. E-9 (405) (2008). URL: http://adsabs.harvard.edu/abs/2009EGUGA..11.9177R.
  50. 50.
    W. J. Junk, P. B. Bayley, and R. E. Sparks, “The flood pulse concept in river-floodplain system,” Proc. of the Intern. Large River Symposium (LARS), Canadian J. of Fisheries and Aquatic Sciences, Vol. 106, 110–127 (1989). URL: https://www.nrem.iastate.edu/class/assets/aecl518/Discussion%20Readings/Junk_et_al._1989.pdf.
  51. 51.
    K. Tockner, F. Malard, and J. V. Ward, “An extension of the flood pulse concept,” Hydrological Processes, Vol. 14, Nos. 16–17, 2861–2883 (2000).Google Scholar
  52. 52.
    J. Kubrak, T. Okruszko, D. Miroslaw-Swiatek, and I. Kardel, “Recognition of hydraulic conditions in the Upper Narew river system and their influence on the wetland habitats in the river valley,” Publs. Inst. Geophys. Pol. Acad. Sc. (387), 209–237 (2005).Google Scholar
  53. 53.
    T. Okruszko, S. Tyszewski, and D. Puslowska, “Water management in the Upper Narew valley,” Zeszyty Problemów Podstawowych Nauk Rolniczych (Pol)., No. 428 (1996).Google Scholar
  54. 54.
    ”IWOR Protection plan of the Narew national park,” Technical report, IWOR and IMUZ, Falenty (2000).Google Scholar
  55. 55.
    Y. P. Li, G. H. Huang, S. L. Nie, et al., “Inexact multistage stochastic integer programming for water resources management under uncertainty,” J. of Environmental Management, Vol. 88, Iss. 1, 93–107 (2008).Google Scholar
  56. 56.
    Y. Ermoliev and R. J-B. Wets (eds.), Numerical Techniques for Stochastic Optimization, IIASA, Springer-Verlag, Berlin (1988).zbMATHGoogle Scholar
  57. 57.
    V. M. Gorbachuk, Yu. M. Ermoliev, and T. Yu. Ermolieva, «A two-stage model of ecological–economic decisions,” Bull. Odessa National University. Economics, Vol. 21, Iss. 9, 142–147 (2016).Google Scholar
  58. 58.
    R. T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-at-Risk,” J. of Risk, Vol. 2, No. 3, 21–41 (2000).CrossRefGoogle Scholar
  59. 59.
    Y. Ermoliev and D. Von Winterfeldt, “Systemic risk and security management,” in: Y. Ermoliev, M. Makowski, and K. Marti (eds.), Managing Safety of Heterogeneous Systems, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin–Heidelberg (2012), pp. 19–49.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. Ermoliev
    • 1
    Email author
  • T. Ermolieva
    • 1
  • T. Kahil
    • 1
  • M. Obersteiner
    • 1
  • V. Gorbachuk
    • 2
  • P. Knopov
    • 2
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations