Cybernetics and Systems Analysis

, Volume 53, Issue 2, pp 176–185 | Cite as

Dynamic Merge of the Global and Local Models for Sustainable Land Use Planning with Regard for Global Projections from GLOBIOM and Local Technical–Economic Feasibility and Resource Constraints*

  • T. Y. Ermolieva
  • Y. M. Ermoliev
  • P. Havlík
  • A. Mosnier
  • D. Leclere
  • S. Fritz
  • H. Valin
  • M. Obersteiner
  • S. V. Kyryzyuk
  • O. M. Borodina
SYSTEMS ANALYSIS

Abstract

In order to conduct research at required spatial resolution, we propose a model fusion involving interlinked calculations of regional projections by the global dynamic model GLOBIOM (Global Biosphere Management Model) and robust dynamic downscaling model, based on cross-entropy principle, for deriving spatially resolved projections. The proposed procedure allows incorporating data from satellite images, statistics, expert opinions, as well as data from global land use models. In numerous case studies in China and Ukraine, the approach allowed to estimate local land use and land use change projections corresponding to real trends and expectations. The disaggregated data and projections were used in national models for planning sustainable land use and agricultural development.

Keywords

global land use model robust downscaling model dynamic model fusion uncertainties local land use projections 

References

  1. 1.
    P. Havlík, U. Schneider, E. Schmid, H. Bottcher, S. Fritz, R. Skalsky, K. Aoki, S. De Cara, G. Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Msonier, T. Sauer, and M. Obersteiner, “Global land-use implications of first and second generation biofuel targets,” Energy Policy, Vol. 39, 5690–5702 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. M. Ermoliev, T. Y. Ermolieva, P. Havlík, A. Mosnier, D. Leclere, S. Fritz, M. Obersteiner, S. V. Kyryzyuk, and O. M. Borodina, “Robust downscaling approaches to disaggregation of data and projections under uncertainties: Case of land cover and land use change systems,” Cybern. Syst. Analysis, Vol. 53, No. 1, 26–33 (2017).CrossRefGoogle Scholar
  3. 3.
    R. Moss, J. Edmonds, K. Hibbard, M. Manning, S. Rose, D. van Vuuren, T. Carter, S. Emori, M. Kainuma, T. Kram, G. Meehl, J. Mitchell, N. Nakicenovic, K. Riahi, S. Smith, R. Stouffer, A. Thomson, J. Weyant, and T. Wilbanks, “The next generation of scenarios for climate change research and assessment,” Nature, Vol. 463, 747–756 (2010).CrossRefGoogle Scholar
  4. 4.
    X. Zhang, T. Ermolieva, J. Balkovic, A. Mosnier, F. Kraxner, and J. Liu, “Recursive cross-entropy model for spatially explicit future land uses: A case study of the Heihe river basin,” J. of Physics and Chemistry of the Earth, Vol. 89, 56–64 (2015).CrossRefGoogle Scholar
  5. 5.
    R. C. Izaurralde, J. R. Williams, W. B. McGill, N. J. Rosenberg, and M. C. Q. Jakas, “Simulating soil C dynamics with EPIC: Model description and testing against long-term data,” Ecological Modeling, Vol. 192, 362–384 (2006).CrossRefGoogle Scholar
  6. 6.
    G. Fischer, H. T. van Velthuizen, M. M. Shah, and F. O. Nachtergaele, “Global agro-ecological assessment for agriculture in the 21st century: Methodology and results,” Research Report RR-02-02, International Institute for Applied Systems Analysis, Laxenburg, Austria (2002).Google Scholar
  7. 7.
    J. Kullback, Information Theory and Statistics, John Wiley and Sons, New York (1959).MATHGoogle Scholar
  8. 8.
    R. Skalský, Z. Tarasovičová, J. Balkovič, E. Schmid, M. Fuchs, E. Moltchanova, G. Kindermann, and P. Scholtz, Geo-Bene Global Database for Bio-Physical Modeling, v.1.0. Concepts, Methodologies and Data, Technical Report, IIASA, Laxenburg (2008).Google Scholar
  9. 9.
    C. Monfreda, N. Ramankutty, and J. Foley, “Farming the planet: Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000,” Global Biogeochemical Cycles, Vol. 22, DOI:10.1029/2007GB002947 (2008).Google Scholar
  10. 10.
    G. E. Kindermann, I. McCallum, S. Fritz, and M. Obersteiner, “A global forest growing stock, biomass and carbon map based on FAO statistics,” Silva Fennica, Vol. 42, 387–396 (2008).CrossRefGoogle Scholar
  11. 11.
    S. Leduc, D. Schwab, E. Dotzauer, E. Schmid, and M. Obersteiner, “Optimal location of wood gasification plants for methanol production with heat recovery,” Intern. J. of Energy Research, Vol. 32, 1080–1091 (2008).CrossRefGoogle Scholar
  12. 12.
    O. Fricko, P. Havlik, J. Rogelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin, M. Amann, T. Ermolieva, N. Forsell, M. Herrero, C. Heyes, G. Kindermann, V. Krey, D. McCollum, M. Obersteiner, S. Pachauri, S. Rao, E. Schmid, W. Schopp, and K. Riahi, The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change (2016). DOI: 10.1016/j.gloenvcha.2016.06.004.Google Scholar
  13. 13.
    Y. Chen, D. Zhang, Y. Sun, X. Liu, N. Wang, and H.H.G. Savenije, “Water demand management: A case study of the Heihe river basin in China,” Phys. Chem. Earth, Pt. A/B/C 30, 408–419 (2005).Google Scholar
  14. 14.
    S. L. Neitsch, J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King, “Soil and water assessment tool,” Theoretical Documentation (2002).Google Scholar
  15. 15.
    G. M. Foody, “Status of land cover accuracy assessment,” Remote Sens. Environ., Vol. 80, 185–201 (2002).CrossRefGoogle Scholar
  16. 16.
    A. G. Zagorodny, Y. M. Ermoliev, and V. L. Bogdanov, “Integrated management, security and robustness,” Publ. by Committee for Systems Analysis and Presidium of the National Academy of Sciences of Ukraine, National Member Organization of the International Institute for Applied Systems Analysis (IIASA), Kyiv (2014).Google Scholar
  17. 17.
    A. N. Golodnikov, Y. M. Ermoliev, T. Y. Ermolieva, P. S. Knopov, and V. A. Pepelyaev, “Integrated modeling of food security management in Ukraine. Models for structural optimization of agricultural production under risk,” Cybern. Syst. Analysis, Vol. 49, No. 2, 217–228 (2013).MathSciNetCrossRefGoogle Scholar
  18. 18.
    O. Borodina, E. Borodina, T. Ermolieva, Y. Ermoliev, G. Fischer, M. Makowski, and H. T. van Velthuizen, Sustainable Agriculture, Food Security, and Socio-Economic Risks in Ukraine, Springer-Verlag, Heidelberg (2012), pp. 169–185.Google Scholar
  19. 19.
    Y. Ermoliev, T. Ermolieva, P. Havlík, A. Mosnier, D. Leclere, M. Obersteiner, and Y. Kostyuchenko, “Estimating local-global dependencies of land use systems by downscaling from GLOBIOM model,” Publ. by Committee for Systems Analysis and Presidium of the National Academy of Sciences of Ukraine, National Member Organization of the International Institute for Applied Systems Analysis (IIASA), Kyiv (2014), pp. 228–240.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. Y. Ermolieva
    • 1
  • Y. M. Ermoliev
    • 1
  • P. Havlík
    • 1
  • A. Mosnier
    • 1
  • D. Leclere
    • 1
  • S. Fritz
    • 1
  • H. Valin
    • 1
  • M. Obersteiner
    • 1
  • S. V. Kyryzyuk
    • 2
  • O. M. Borodina
    • 2
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Institute for Economics and ForecastingNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations