Cybernetics and Systems Analysis

, Volume 51, Issue 4, pp 529–546 | Cite as

Highly Efficient Methods of the Identification of Competitive Diffusion Parameters in Inhomogeneous Media of Nanoporous Particles

  • I. V. Sergienko
  • M. R. Petryk
  • J. Fraissard
  • S. Leclerc


Creation of highly efficient methods of identification by constructing low-cost analytical solutions to direct and conjugate problems is considered. Explicit expressions are constructed for residual functional gradients to identify the transfer parameters in nanoporous media with the known total mass distribution in the solid and gaseous phases of the adsorbed substances. The results of numerical experiments are presented.


mathematical model competitive diffusion parameter identification direct and conjugate problems gradient method Heaviside operational method residual functional gradient inhomogeneous media nanoporous particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fernandez, J. Kärger, D. Freude, D. Pampel, J. M. Van Baten, and R. Krishna, “Mixture diffusion in zeolites studied by MAS PFG NMR and molecular simulation,” Microporous and Mesoporous Materials, 105, 124–131 (2007).CrossRefGoogle Scholar
  2. 2.
    J. Kärger, F. Grinberg, and P. Heitjans, Diffusion Fundamentals, Leipziger Universite, Leipzig (2005).Google Scholar
  3. 3.
    Ì. Petryk, S. Leclerc, D. Canet, and J. Fraissard, “Modeling of gas transport in a microporous solid using a slice selection procedure: Application to the diffusion of benzene in ZSM5,” Catalysis Today, 139, No. 3, 234–240 (2008).CrossRefGoogle Scholar
  4. 4.
    S. Leclerc, M. Petryk, D. Canet, and J. Fraissard, “Competitive diffusion of gases in a zeolite using proton NMR and sclice selection procedure,” Catalysis Today, 187, No. 1, 104–107 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Petryk, S. Leclerc, D. Canet, and J. Fraissard, “Mathematical modeling and visualization of gas transport in a zeolite bed using a slice selection procedure,” Diffusion Fundamentals, 4, 11.1–11.23 (2007).Google Scholar
  6. 6.
    V. S. Deineka, M. R. Petryk, and J. Fraissard, “Identifying kinetic parameters of mass transfer in components of multicomponent heterogeneous nanoporous media of a competitive diffusion system,” Cybern. Syst. Analysis, 47, No. 5, 705–723 (2011).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. R. Petryk, “Mathematical modeling of mass transfer in symmetric heterogeneous and nanoporous media with a system of n-interface interactions,” Cybern. Syst. Analysis, 43, No. 1, 94–111 (2007).zbMATHCrossRefGoogle Scholar
  8. 8.
    I. V. Sergienko and V. S. Deineka, Optimal Control of Distributed Systems with Conjugation Conditions, Kluwer Añademic Publishers, New York (2005).zbMATHGoogle Scholar
  9. 9.
    V. V. Stepanov, A Course in Differential Equations [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  10. 10.
    M. P. Lenyuk and M. R. Petryk, Integral Fourier, Bessel Transformations with Spectral Parameter in Problems of Mathematical Modeling of Mass Transfer in Inhomogeneous and Nanoporous Media [in Ukrainian], Naukova Dumka, Kyiv (2000).Google Scholar
  11. 11.
    M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of Complex Variable [in Russian], Nauka, Moscow (1973).zbMATHGoogle Scholar
  12. 12.
    A. N. Tikhonov and V. Ya. Arsenin, Methods to Solve Ill-Posed Problems [in Russian], Nauka, Moscow (1979).Google Scholar
  13. 13.
    J.-L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Mathematics, Springer, New York (2008).Google Scholar
  14. 14.
    O. M. Alifanov, Inverse Heat Exchange Problems [in Russian], Mashinostroenie, Moscow (1988).Google Scholar
  15. 15.
    V. S. Deineka, “Parameters identification in problems of mass transfer in nanoporous media given the combined mass distributions,” Dop. NAN Ukrainy, No. 4, 26–32 (2013).Google Scholar
  16. 16.
    V. S. Deineka, M. R. Petryk, and D. M. Mykhalyk, “Identification of kinetic parameters of one-component adsorptive mass transfer in microporous catalytic media,” J. Autom. Inform. Sci., 43, No. 3, 9–23 (2011).CrossRefGoogle Scholar
  17. 17.
    M. R. Petryk and J. Fraissard, “Mathematical modeling of nonlinear competitive two-component diffusion in media of nanoporous particles,” J. Autom. Inform. Sci., 41, No. 3, 37–55 (2009).CrossRefGoogle Scholar
  18. 18.
    I. V. Sergienko and V. S. Deineka, “Parameters identification by gradient methods of the problems of substance diffusion in nanoporous medium,” J. Autom. Inform. Sci., 42, No. 11, 1–17 (2010).CrossRefGoogle Scholar
  19. 19.
    I. V. Sergienko and V. S. Deineka, Systems Analysis of Multicomponent Distributed Systems [in Russian], Naukova Dumka, Kyiv (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. V. Sergienko
    • 1
  • M. R. Petryk
    • 2
  • J. Fraissard
    • 3
  • S. Leclerc
    • 4
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Ivan Puluj Ternopil National Technical UniversityTernopilUkraine
  3. 3.Pierre and Marie Curie UniversityParisFrance
  4. 4.University of LorraineNancyFrance

Personalised recommendations