Advertisement

Low-cost modification of Korpelevich’s methods for monotone equilibrium problems

  • S. I. LyashkoEmail author
  • V. V. Semenov
  • T. A. Voitova
Article

Abstract

A modification of Korpelevich’s method with one metric projection onto the feasible set at an iteration step is proposed to solve monotone equilibrium problems. The weak convergence of the modified method is proved.

Keywords

equilibrium problem variational inequality Korpelevich method projection weak convergence 

References

  1. 1.
    H. Nikaido and K. Isoda, “Note on noncooperative convex games,” Pacif. J. Math., No. 5, 807–815 (1955).Google Scholar
  2. 2.
    C. Baiocchi and A. Capello, Variational and Quasivariational Inequalities [Russian translation], Nauka, Moscow (1988).Google Scholar
  3. 3.
    E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” Math. Stud., 63, 123–145 (1994).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Gopfert, Chr. Tammer, H. Riahi, and C. Zalinescu, Variational Methods in Partially Ordered Spaces, Springer, New York–Berlin–Heidelberg (2003).Google Scholar
  5. 5.
    E. I. Nenakhov, “On one method of finding the equilibrium state,” Obch. ta Prikl. Mat., No. 80, 59–67 (1996).Google Scholar
  6. 6.
    A. S. Antipin, “Equilibrium programming: Proximal methods,” Zh. Vychisl. Mat. Mat. Fiz., 37, No. 11, 1327–1339 (1997).MathSciNetGoogle Scholar
  7. 7.
    A. S. Antipin, Gradient and Extragradient Approaches to Bilinear Equilibrium Programming [in Russian], VTs RAN, Moscow (2002).Google Scholar
  8. 8.
    Y. M. Ermoliev and S. D. Flaam, “Repeated play of potential games,” Cybernetics and Systems Analysis, Vol. 38, No. 3, 355–367 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    G. Mastroeni, “On auxiliary principle for equilibrium problems,” Publ. del Depart. di Math. Dell’Univ. di Pisa, 3, 1244–1258 (2000).Google Scholar
  10. 10.
    E. G. Golshtein and N. V. Tretyakov, Modified Lagrange Functions: Theory and Optimization Methods [in Russian], Nauka, Moscow (1989).Google Scholar
  11. 11.
    P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” J. Nonlinear Convex Anal., 6, 117–136 (2005).MathSciNetzbMATHGoogle Scholar
  12. 12.
    S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,” J. Math. Anal. Appl., 331, 506–515 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    N. T. T. Van, J. J. Strodiot, and V. H. Nguyen, “A bundle method for solving equilibrium problems,” Math. Program., Ser. B, 116 (1–2), 529–552 (2009).Google Scholar
  14. 14.
    B. Nguyen and T. T. H. Dang, “Tikhonov regularization method for system of equilibrium problems in Banach spaces,” Ukr. Mat. Zh., 61, No. 8, 1098–1105 (2009).zbMATHGoogle Scholar
  15. 15.
    Yu. V. Malitsky and V. V. Semenov, “A proximal algorithm for the equilibrium problems,” in: Abstracts of XVIth Int. Conf. “PDMU-2010” (Yalta, Ukraine), Taras Shevchenko Nat. Univ. of Kiev, Kyiv (2010), pp. 96–97.Google Scholar
  16. 16.
    Yu. V. Malitsky and V. V. Semenov, “New theorems on the strong convergence of proximal methods for equilibrium programming problems,” Zh. Obchisl. ta Prikl. Mat., No. 3 (102), 79–88 (2010).Google Scholar
  17. 17.
    G. M. Korpelevich, “Extragradient method for finding saddle points and other problems,” Economika and Matem. Methody, 12, No. 4, 747–756 (1976).zbMATHGoogle Scholar
  18. 18.
    L. D. Popov, “Modification of the Arrow–Gurvits method for finding saddle points,” Mat. Zametki, 28, No. 5, 777–784 (1980).MathSciNetzbMATHGoogle Scholar
  19. 19.
    L. D. Popov, “On schemes for forming leading sequences in the regularized extragradient method for solving variational inequalities,” Izv. Vuzov, Matematika, No. 1, 70–79 (2004).Google Scholar
  20. 20.
    I. V. Konnov, “Combined subgradient methods for finding saddle points,” Izv. Vuzov, Matematika, No. 10, 30–33 (1992).Google Scholar
  21. 21.
    I. V. Konnov, “Combined relaxation methods for finding equilibrium points and solving related problems,” Izv. Vuzov, Matematika, No. 2, 46–53 (1993).Google Scholar
  22. 22.
    I. V. Konnov, S. Schaible, and J. C. Yao, “Combined relaxation method for mixed equilibrium problems,” J. Optim. Theory Appl., 126, 309–322 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. N. Iusem and B. F. Svaiter, “A variant of Korpelevich’s method for variational in equalities with a new search strategy,” Optimization, 42, 309–321 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    J. Y. Bello Cruz and A. N. Iusem, “A strongly convergent direct method for monotone variational inequalities in Hilbert spaces,” Numer. Func. Anal. and Optim., 1, 23–36 (2009).MathSciNetCrossRefGoogle Scholar
  25. 25.
    D. Q. Tran, L. D. Muu, and V. H. Nguyen, “Extragradient algorithms extended to solving equilibrium problems,” Optimization, 57, No. 6, 749–776 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    I. Ekland and R. Temam, Convex Analysis and Variational Problems [Russian translation], Mir, Moscow (1979).Google Scholar
  27. 27.
    J. P. Aubin and I. Ekland, Applied Nonlinear Analysis [Russian translation], Mir, Moscow (1988).Google Scholar
  28. 28.
    Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Amer. Math. Soc., 73, 591–597 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    G. Stampacchia, “Formes bilineaires coercitives sur lesensembles convexes,” Comptes rendus de l’Acad. des Sci. Paris, 258, 4413–4416 (1964).MathSciNetzbMATHGoogle Scholar
  30. 30.
    L. Nirenberg, Topics in Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1977).Google Scholar
  31. 31.
    I. I. Eremin and V. D. Mazurov, Nonstationary Processes of Mathematical Programming [in Russian], Nauka, Moscow (1979).Google Scholar
  32. 32.
    V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejer Type: Theory and Applications [in Russian], Regular. and Khaot. Dinamika, Moscow-Izhevsk (2005).Google Scholar
  33. 33.
    I. I. Eremin and L. D. Popov, “Fejer processes in theory and practice: Recent results,” Izv. Vuzov, Matematika, No. 1, 44–65 (2009).Google Scholar
  34. 34.
    A. B. Bakushinsky and A. V. Goncharsky, Ill-posed Problems: Numerical Methods and Applications [in Russian], Izd. MGU, Moscow (1989).Google Scholar
  35. 35.
    P.-E. Mainge, “A hybrid extragradient-viscosity method for monotone operators and fixed point problems,” SIAM J. Control Optim., 47, No. 3, 1499–1515 (2008).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. I. Lyashko
    • 1
    Email author
  • V. V. Semenov
    • 1
  • T. A. Voitova
    • 1
  1. 1.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations