Cybernetics and Systems Analysis

, Volume 42, Issue 6, pp 839–850 | Cite as

On measuring and profiling catastrophic risks

  • V. I. Norkin


An approach to decision-making under catastrophic risks based on risk profiling is proposed. The approach assumes, for some selected catastrophic scenarios, to simulate their consequences (damage) as functions of control parameters and to impose expert constraints on acceptable levels of relative losses in such scenarios. The approach is illustrated by a number of one-stage decision-making problems reduced to mixed linear-programming problems.


catastrophic risk catastrophic flood risk profiling risk measures risk functions indifference curves decision-making investments risk zoning insurance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Norkin, “On modeling spatial, temporal and magnitude aspects in insuring cataclysmic events,” in: Proc. Sec. Intern. School on Actuar. Financ. Math., Kyiv, Ukraine, 8–12 June, 1999, Theory of Stochastic Processes (Kiev), No. 12, 98–110 (1999).Google Scholar
  2. 2.
    Yu. M. Ermoliev, T. Yu. Ermolieva, G. J. MacDonald, and V. I. Norkin, “Optimization of catastrophic risk portfolios,” in: M. Bonilla et al. (eds.), Papers and Proc. 24th Meeting Euro Working Group on Financial Modeling, Univ. de Valencia (Spain) (1999), pp. 251–269.Google Scholar
  3. 3.
    Yu. M. Ermoliev, T. Yu. Ermolieva, G. J. MacDonald, and V. I. Norkin, “Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks,” Ann. Oper. Res., 99, 207–225 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Yu. M. Ermoliev, T. Yu. Ermolieva, G. J. MacDonald, A. Amendola, and V. I. Norkin, “A system approach to management of catastrophic risks,” Eur. J. Oper. Res., 122, 452–460 (2000).zbMATHCrossRefGoogle Scholar
  5. 5.
    Yu. M. Ermol’ev, T. Yu. Ermol’eva, G. McDonald, and V. I. Norkin, “Problems on insurance of catastrophic risks,” Cybern. Syst. Anal., Vol. 37, No. 2, 220–234 (2001).zbMATHCrossRefGoogle Scholar
  6. 6.
    T. Ermolieva and Y. Ermoliev, “Catastrophic risk management: flood and seismic risks case studies,” in: S. W. Wallace and W. T. Ziemba (eds.), Applications of Stochastic Programming, MPS-SIAM, Philadelphia (2005), pp. 425–444.Google Scholar
  7. 7.
    V. S. Mikhalevich, P. S. Knopov, and A. N. Golodnikov, “Mathematical models and methods of risk assessment in ecologically hazardous industries,” Cybern. Syst. Anal., Vol. 30, No. 2, 259–273 (1994).zbMATHCrossRefGoogle Scholar
  8. 8.
    P. S. Knopov and T. P. Maryanovich, “On some actual problems of estimating risk in complex systems under insufficient information,” Cybern. Syst. Anal., Vol. 39, No. 4, 576–585 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    I. V. Sergienko, V. M. Yanenko, and K. L. Atoev, “Conceptual framework for managing the risk of ecological, technogenic, and sociogenic disasters,” Cybern. Syst. Anal., Vol. 33, No. 2, 203–219 (1997).MathSciNetGoogle Scholar
  10. 10.
    N. Yu. Kuznetsov and K. V. Mikhalevich, “Reliability analysis of systems described by fault trees with efficiency,” Cybern. Syst. Anal., Vol. 39, No. 5, 746–752 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss distribution,” J. Bank. Finance, 26, 1443–1471 (2002).CrossRefGoogle Scholar
  12. 12.
    V. S. Kirilyuk, “The class of polyhedral coherent risk measures,” Cybern. Syst. Anal., Vol. 40, No. 4, 599–609 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Ch. Pflug, “Risk-reshaping contracts and stochastic optimization,” in: IIASA Working Paper WP-96-142, Laxenburg (Austria), Intern. Inst. for Appl. Systems Analysis (1996).Google Scholar
  14. 14.
    R. E. Beard, T. Pentikainen, and E. Pesonen, Risk Theory. The Stochastic Basis of Insurance, 3rd ed., Chapman and Hall, London, New York (1984).zbMATHGoogle Scholar
  15. 15.
    M. M. Leonenko, Yu. S. Mishura, Ya. M. Parkhomenko, and M. J. Yadrenko, Theoretic-Probability and Statistical Methods in Econometrics and Finance Mathematics [in Ukrainian], Informtekhnika, Kyiv (1995).Google Scholar
  16. 16.
    S. Asmussen, Ruin Probabilities, World Scientific, Singapore (2000).Google Scholar
  17. 17.
    A. N. Nakonechnyi, “Monte Carlo estimate of the probability of ruin in a compound Poison model of risk theory,” Cybern. Syst. Anal., Vol. 31, No. 6, 921–923 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    B. V. Norkin, “Method of successive approximations used to solve integral equations of actuarial mathematics,” Author’s Abstracts of PhD Thesis, V. M. Glushkov Inst. of Cybernetics, Kyiv (2006).Google Scholar
  19. 19.
    A. N. Nakonechnyi, “Optimization of risk processes,” Cybern. Syst. Anal., Vol. 32, No. 5, 641–646 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. I. Lyubchenko and A. N. Nakonechnyi, “Optimization methods for compound Poison risk processes,” Cybern. Syst. Anal., Vol. 34, No. 2, 230–237 (1998).zbMATHMathSciNetGoogle Scholar
  21. 21.
    HEC-FDA Flood Damage Reduction Analysis (User’s manual), US Army Corps of Engineers, Hydrological Engineering Center, version 1.0, Jan. 1998, Approved for Public Release, CPD-72.Google Scholar
  22. 22.
    Yu. M. Ermol’ev, Methods of Stochastic Programming [in Russian], Nauka, Moscow (1976).zbMATHGoogle Scholar
  23. 23.
    D. B. Yudin, Problems and Methods of Stochastic Programming [in Russian], Sov. Radio, Moscow (1979).zbMATHGoogle Scholar
  24. 24.
    A. Ruszczynski and A. Shapiro (eds.), Stochastic Programming, Handbooks in OR and MS, Vol. 10, North-Holland Publ. Co., Amsterdam (2003).Google Scholar
  25. 25.
    D. Dentcheva and A. Ruszczynski, “Optimization with stochastic dominance constraints,” SIAM J. Optim., 14, 548–566 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    H. M. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Blackwell, Oxford (1987).zbMATHGoogle Scholar
  27. 27.
    W. Ogryczak and A. Ruszczynski, “On consistency of stochastic dominance and mean-semideviation models,” Math. Program., 89, 217–232 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of risks,” Math. Finance, 9, 203–227 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    A. Ruszczynski and A. Shapiro, “Optimization of risk measures,” e-print available at, 24 July (2004).

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. I. Norkin
    • 1
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations