Advertisement

Cybernetics and Systems Analysis

, Volume 42, Issue 1, pp 126–136 | Cite as

Compositional analysis of Petri nets

  • D. A. Zaitsev
Article

Abstract

Foundations of compositional analysis of Petri nets are presented. This analysis consist of the determination of properties of a given Petri net from the properties of its functional subnets. Compositional analysis covers the investigation of behavioral and structural properties of Petri nets with the help of matrix methods that use fundamental equations and invariants. The exponential acceleration of computations as a function of the dimensionality of a net is obtained.

Keywords

Petri net functional subnet composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Kotov, Petri Nets [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    T. Murata, “Petri nets: Properties, analysis, and applications,” Proc. IEEE, 77, No. 4, 41–85 (1989).CrossRefGoogle Scholar
  3. 3.
    A. I. Sleptsov and A. A. Yurasov, Design Automation of Systems for Controlling Flexible Automated Industrial Processes [in Russian], B. N. Malinovskii (ed.), Tekhnika, Kiev (1986).Google Scholar
  4. 4.
    S. M. Achasova and O. L. Bandman, Correctness of Parallel Computational Processes [in Russian], Nauka, Novosibirsk (1990).Google Scholar
  5. 5.
    D. A. Zaitsev and A. I. Sleptsov, “State equations and equivalent transformations of timed Petri nets,” Kibern. Sist. Anal., No. 5, 59–76 (1997).Google Scholar
  6. 6.
    J. M. Toudic, “Linear algebra algorithms for the structural analysis of Petri nets,” Rev. Tech. Thomson CSF, 14, No. 1, 136–156 (1982).Google Scholar
  7. 7.
    S. L. Kryvyi, “Methods of solution and criteria of consistency of systems of linear Diophantine equations over the set of natural numbers,” Kibern. Sist. Anal., No. 4, 12–36 (1999).Google Scholar
  8. 8.
    D. A. Zaitsev, “Formal grounding of the Toudic method,” in: Proc. 10th Workshop “ Algorithms and Tools for Petri Nets” (Sept. 26–27, 2003), Eichstaett (Germany) (2003), pp. 184–190.Google Scholar
  9. 9.
    D. A. Zaitsev, “Subnets with input and output places,” Petri Net Newsletter, 64 (Apr.), 3–6 (2003).Google Scholar
  10. 10.
    D. A. Zaitsev, “Decomposition of Petri nets,” Kibern. Sist. Anal., No. 5, 131–140 (2004).Google Scholar
  11. 11.
    D. A. Zaitsev, “Decomposition of the ECMA protocol,” Radiotekhnika: Vseukr. Mezhved. Nauchno-Tekhn. Sb., No. 138, 130–137 (2004).Google Scholar
  12. 12.
    D. A. Zaitsev, “Verification of Ethernet protocols,” in: Proc. A. S. Popov Academy of Communications, No. 1, 42–48 (2004).Google Scholar
  13. 13.
    K. Loogheed, Y. Rekhter, and T. J. Watson, A Border Gateway Protocol (BGP), RFC 1105 (1989).Google Scholar
  14. 14.
    D. A. Zaitsev, “Invariants of timed Petri nets,” Kibern. Sist. Anal., No. 2, 92–106 (2004).Google Scholar
  15. 15.
    S. L. Kryvyi, “Algorithms of solution of systems of linear Diophantine constraints over the set {0,1},” Kibern. Sist. Anal., No. 5, 58–69 (2003).Google Scholar
  16. 16.
    S. L. Kryvyi and L. Ye. Matveyeva, “Formal methods of analysis of systems properties,” Kibern. Sist. Anal., No. 2, 15-36 (2003).Google Scholar
  17. 17.
    D. A. Zaitsev, “Invariants of functional subnets,” in: Proc. A. S. Popov Academy of Communications, No. 4, 57–63 (2003).Google Scholar
  18. 18.
    D. A. Zaitsev, “Computational complexity of the Toudic method,” in: Artificial Intelligence, 29–37 (2004).Google Scholar
  19. 19.
    D. A. Zaitsev, Functional Petri Nets, Univ. Paris-Dauphine, Cahier du Lamsade, 224 (Avril) (2005) (www.lamsade.dauphine.fr/cahiers.html).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. A. Zaitsev
    • 1
  1. 1.National Academy of CommunicationsOdessaUkraine

Personalised recommendations