Advertisement

Cybernetics and Systems Analysis

, Volume 40, Issue 5, pp 739–746 | Cite as

Decomposition of Petri nets

  • D. A. Zaitsev
Article

Abstract

The problem of splitting any given Petri net into functional subnets is considered. The properties of functional subnets and sets that induce them are investigated. An algorithm of polynomial complexity is constructed for decomposition of nets.

Keywords

Petri net subnet decomposition algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Peterson, J. L. 1984Petri Net Theory and the Modelng of SystemsMirMoscow[Russian translation]Google Scholar
  2. 2.
    Kotov, V. Ye. 1984Petri NetsNaukaMoscow[in Russian]Google Scholar
  3. 3.
    Bandman, M. K., Bandman, O. L., Yesikova, T. N. 1990Territorial-Industrial Complexes: Prediction of the Process of Formation Using Petri NetsNaukaNovosibirsk[in Russian]Google Scholar
  4. 4.
    Sleptsov, A. I., Yurasov, A. A. 1986Malinovskii, B. N. eds. Automation of Designing Systems for Controlling Flexible Automated Industrial ProcessesTekhnikaKiev[in Russian]Google Scholar
  5. 5.
    D. A. Zaitsev and A. I. Sleptsov, “Visualization of industrial processes in the tooling system of the dispatcher of an engineering plant,” Avtometriya, No. 4, 90–93 (1990).Google Scholar
  6. 6.
    D. A. Zaitsev and A. I. Sleptsov, “State equations and equivalent transformations for timed Petri nets,” Kibern. Sist. Anal., No. 5, 59–74 (1997).Google Scholar
  7. 7.
    A. Ichikawa, K. Yokoyama and S. Kurogi, “Reachability and control of discrete event systems represented by conflict-free Petri nets,” in: Proc. ISCAS 85, 487–490 (1985).Google Scholar
  8. 8.
    Harary, F. 1973Graph TheoryMirMoscow[Russian translation]Google Scholar
  9. 9.
    Glushkov, V. M. 1962Synthesis of Digital AutomataFizmatgizMoscow[in Russian]Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • D. A. Zaitsev
    • 1
  1. 1.A. S. Popov National Institute of CommunicationOdessaUkraine

Personalised recommendations