Cardiovascular Engineering

, Volume 8, Issue 2, pp 88–93 | Cite as

Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures

  • Madalena D. Costa
  • Chung-Kang Peng
  • Ary L. Goldberger
Original Paper


Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools––multiscale entropy and multiscale time irreversibility––are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.


Nonlinear dynamics Heart rate variability Information theory Nonequilibrium systems 



We gratefully acknowledge support from the NIH Research Resource for Complex Physiologic Signals (NIBIB and NIGMS), the G. Harold and Leila Y. Mathers Charitable Foundation, the James S. McDonnell Foundation, the Ellison Medical Foundation, and the Defense Advanced Research Projects Agency (HR0011-05-1-0057).


  1. 1.
    Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 2002;19(99 Suppl 1):2466–72.CrossRefGoogle Scholar
  2. 2.
    Buchman TG. The community of the self. Nature 2002;420:246–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Cover TM, Thomas JA. Elements of information theory. 2nd ed. New York: John Wiley & Sons, Inc; 1991.Google Scholar
  4. 4.
    Grassberger P. In: Atmanspacher H, Scheingraber H, editors. Information dynamics. New York: Plenum; 1991.Google Scholar
  5. 5.
    Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 2002;89:068102-1-4.Google Scholar
  6. 6.
    Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E 2005;71:021906-1-18.Google Scholar
  7. 7.
    Costa M, Goldberger AL, Peng C-K. Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys Rev Lett 2005;95:198102-1-4.Google Scholar
  8. 8.
    Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol 2000;278:H2039-49.Google Scholar
  9. 9.
    Zhang Y-C. Complexity and 1/f noise. A phase space approach. J Phys I 1991;1:971–7.CrossRefGoogle Scholar
  10. 10.
    Prigogine I, Antoniou I. Laws of nature and time symmetry breaking. Ann NY Acad Sci 1999;879:8–28.CrossRefGoogle Scholar
  11. 11.
    Weiss G. Time-reversibility of linear stochastic processes. J Appl Probab 1975;12:831–6.CrossRefGoogle Scholar
  12. 12.
    Jou D, Casas-Vazquez J, Lebon G. Extended irreversible thermodynamics. Berlin: Springer; 2001.Google Scholar
  13. 13.
    Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests. Phys Rev Lett 1996;77:635–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Costa M, Goldberger AL, Peng C-K. Multiscale entropy to distinguish physiologic and synthetic RR time series Comput Cardiol 2002;29:137–40.PubMedGoogle Scholar
  15. 15.
    Moody GB. RR interval time series modeling: the PhysioNet/Computers in Cardiology Challenge 2002. Comput Cardiol 2002;29:125–8.Google Scholar
  16. 16.
    Ivanov PCh, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik Z, Stanley HE. Multifractality in human heartbeat dynamics. Nature 1999;399:461–5.CrossRefGoogle Scholar
  17. 17.
    Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, Peng C-K. Noise and poise: Enhancement of postural complexity in the elderly with a stochastic resonance-based therapy. Europhys Lett 2007;77:68008-1-5.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Madalena D. Costa
    • 1
  • Chung-Kang Peng
    • 1
  • Ary L. Goldberger
    • 1
  1. 1.Division of Interdisciplinary Medicine and BiotechnologyBeth Israel Deaconess Medical Center/Harvard Medical SchoolBostonUSA

Personalised recommendations